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INTRODUCTION AND MOTIVATION
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The era of quantum engineering

Quantum communication
Quantum key distribution 
Quantum teleportation 
Quantum network 
Entanglement-assisted communication 
. . . . . .

Quantum sensing
Using non-classical source to enhance 
hypothesis testing and parameter 
estimation 
. . . . . .

Quantum computing
Quantum adiabatic algorithms 
Quantum circuit model 
Measurement-based quantum computing 
NISQ quantum computation 
Quantum machine learning

Enabling 
non-classical  
resource 
at distance

As sub-routine in  
communication  
and computing

Enables receiver design, 
Basic components

LIGO

Quantum 
satellite

Quantum computer 
IBM, >50 qubits, 
Google supremacy, 
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Quantum networking

Quantum computers
Quantum computers

Quantum network

Quantum sensors
Quantum sensors

Classical transceiver

Classical transceiver

Classical bits 
Private keys

Hard classical 
problems (e.g. 
factoring), processing 
information from 
sensors and classical 
transceivers

Entanglement, classical 
bits, qubits

dark matter, biosensing, gravitational 
wave, radar, lidar, Spectroscopy 
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Many physical platforms and systems
(But we’ll focus on photons...)

NV centers, color centers

Waldherr et al. Nature 506, 204 (2014)
Long coherence time

Rydberg atoms

Nature 595, 227–232 (2021)
Large scale, high fidelity

SC transmon qubits

Arute et al., Nature 574, 505 (2019). 
Large scale, strong interaction

Google Sycamore

Microwave SC cavities

Campagne-Ibarcq et al., 
Nature 584, 368 (2020)

Strong interaction, robustness

Bulk optics/nanophotonics

Scalable, sensing/communication
Zhong et al., Science 370 1460 (2020)

High fidelity, high circuit volume

Wright et al., Nat. Commun. 10, 5464 (2019)

Ion-Q

Trapped-ion

Electron spin in Q dots

Long coherence time
Kandel et al., Nature 573 553 (2019)

Optomechanical systems

Force sensing
Wilson et al., Nature 524 325 (2015)

Transduction systems

Fan et al., Science Adv. 4 aar4994 (2018) 

networking
3
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Poll 0: Photonic quantum information processing

What are photons good for?

(A) Quantum sensing

(B) Quantum computing

(C) Quantum communication

(D) All of the above
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Answer 0: Photonic quantum information processing

What are photons good for?

(A) Quantum sensing

(B) Quantum computing

(C) Quantum communication

(D) All of the above

Photons are very versatile. Several quantum computing approaches exists
that are based on linear optics, microwave cavity modes, etc. Quantum
sensing platforms have been demonstrated with microwave cavities,
quantum optical setups, etc. Finally, quantum information processing
across long distances will require quantum optical interlinks.
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QUANTUM CHANNELS:
GENERAL DESCRIPTION
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Examples: Erasure and Depolarizing

Lε: Consider a two-level quantum system (a qubit) described by the
quantum state Ψ ∈ H , and consider the “erasure state” |ε⟩ which
lies outside of H (i.e., ⟨ε|Ψ|ε⟩ = 0∀Ψ ∈ H ). An erasure channel
Lε acts on the qubit as,

Lε(Ψ) = (1− ε)Ψ + ε |ε⟩⟨ε| ,

where 0 ≤ ε ≤ 1 is the erasure probability.

∆p: Given a qubit Ψ, a depolarizing channel ∆p acts as follows,

∆p(Ψ) = (1− p)Ψ + pÎ/2,

where Î/2 is the maximally mixed state and 0 ≤ p ≤ 4/3.
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Poll 1: Concatenated erasures

Consider two erasure channels Lε1 and Lε2 where, e.g.,
Lε(Ψ) = (1− ε)Ψ + ε |ε⟩⟨ε| for some state Ψ. The concatenation of the
two erasure channels is another erasure channel, Lε12 = Lε2 ◦ Lε1 . What
is the erasure probability ε12? [Hint: The erasure probability is 1 minus
the transmission probability.]

(A) (ε1 + ε2)/2

(B) ε1ε2

(C) 1− (1− ε1)(1− ε2)
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Answer 1: Concatenated erasures

Consider two erasure channels Lε1 and Lε2 where, e.g.,
Lε(Ψ) = (1− ε)Ψ + ε |ε⟩⟨ε| for some state Ψ. The concatenation of the
two erasure channels is another erasure channel, Lε12 = Lε2 ◦ Lε1 . What
is the erasure probability ε12? [Hint: The erasure probability is 1 minus
the transmission probability.]

(A) (ε1 + ε2)/2

(B) ε1ε2

(C) 1− (1− ε1)(1− ε2)

State either gets transmitted or erased. Transmission probability for first
channel is (1− ε1). Transmission probability for second channel is
(1− ε2). Total transmission probability is the product of probabilities
(1− ε1)(1− ε2). Erasure probability is thus 1− (1− ε1)(1− ε2).
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GAUSSIAN BOSONIC CHANNELS
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Recall: Quantum harmonic oscillator

Free EM field is bosonic field described by harmonic oscillator-like
Hamiltonian Ĥosc =

ℏω
2

(
q̂2 + p̂2

)
with frequency ω
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Canonical position q̂ and momentum p̂
(quadratures) obey CCR [q̂, p̂] = iÎ

Annihilation operator â related via
â = 1√

2
(q̂ + ip̂) s.t.

[
â, â†

]
= Î

Equivalently, Ĥosc = ℏωn̂+ ℏω/2 with number operator n̂ ≡ â†â and
eigenstate (Fock state) |n⟩ where n ∈ Z+.

Explicitly, |n⟩ = (â†)
n

√
n!

|vac⟩. Then, â |n⟩ =
√
n |n− 1⟩ and

â† |n⟩ =
√
n+ 1 |n+ 1⟩. Note â |vac⟩ = 0.
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Poll 2: Pure loss and erasure

A pure-loss channel Lη has an operator sum representation

Lη(ρ) =

∞∑
ℓ=0

ÂℓρÂ
†
ℓ, (1)

with Kraus operators

Âℓ =

√
(1− η)ℓ

ℓ!
ηâ

†â/2âℓ. (2)

How many Kraus operators do we need to describe the output Lη(ρ1) for
a single-photon input state ρ1? [Hint: focus on the âℓ term and recall that
â annihilates the vacuum.]
(A) 1 (B) 2 (C) 3
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Answer 2: Pure loss and erasure

A pure-loss channel Lη has an operator sum representation

Lη(ρ) =

∞∑
ℓ=0

ÂℓρÂ
†
ℓ, (3)

with Kraus operators

Âℓ =

√
(1− η)ℓ

ℓ!
ηâ

†â/2âℓ. (4)

How many Kraus operators do we need to describe the output Lη(ρ1) for
a single-photon input state ρ1? [Hint: Focus on the âℓ term and recall
that â annihilates the vacuum.]
(A) 1 (B) 2 (C) 3

For single-photon state ρ1 and ℓ ≥ 2, âℓρ1â
ℓ † = 0 because

âρ1â
† ∝ |vac⟩⟨vac| and â |vac⟩⟨vac| â† = 0. Thus only first two Kraus

operators (ℓ = 0, 1) are necessary (and given by Â0 =
√
ηÎ and

Â1 =
√
1− ηâ).
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Exercise 1: Amplifier-then-loss is less noisy

Q: From before, we have that NNB1
= AG,N2 ◦ Lη,N1 for Gη = 1, where

NB1 = (G− 1)(N1 +N2 + 1). Show that NNB2
= Lη,N1 ◦ AG,N2 for

Gη = 1 and give NB2 explicitly. Prove that NB2 < NB1 . Hence,
amp-loss is less noisy than loss-amp.

A: Use similar tricks and prove at level of annihilation operators.

â
AG,N2−→ â′ =

√
Gâ+

√
G− 1ê†2

â′
Lη,N1−→ â′′ =

√
ηâ′ +

√
1− ηê1.

Then â′′ =
√
ηGâ+

√
1− ηG

(√
η(G−1)ê†2+

√
1−ηê1√

1−ηG

)
. Equivalent to

AGN NB2 in limit ηG → 1 with NB2 = (1− η)(N2 +N1 + 1). Since
1− η = (G− 1)/G and (G− 1)/G < G− 1, then NB2 < NB1 .

40 / 63



SINGLE PHOTON ENCODINGS
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Dual-rail qubit

Photons have many degrees of freedom (polarization, spatial, angular
momentum etc.).

Each dof can described by set of mode operators {âk}Mk=1 where M is
the number of orthogonal modes

Generally focus on two modes k ∈ {1, 2} to define a photonic qubit.
Logical states 0 and 1 are single-photon states

|0⟩ = â†1 |vac⟩ and |1⟩ = â†2 |vac⟩

s.t. general dual-rail qubit Ψ ∈ span{|0⟩ , |1⟩}
Technically, |vac⟩ = |vac⟩1 ⊗ |vac⟩2, â

†
1 |vac⟩ = â†1 ⊗ Î |vac⟩1 ⊗ |vac⟩2

etc.
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Single qubit operations

Single-qubit operations implemented with passive operations.

Passive operations commute with total photon number
N̂ =

∑2
k=1 â

†
kâk

Consist of unitary beam splitters and phase-shifters, ÛBS and Ûϕ,
with Hamiltonians

ĤBS = iθeiφâ†1â2 + h.c.,

Ĥϕ =

2∑
k=1

ϕkâ
†
kâk.
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Exercise 2: Passive operations

Q: Show that any Hamiltonian of the form Ĥ =
∑

i,j Hij â
†
i âj commutes

with the total photon number operator N̂ =
∑2

k=1 â
†
kâk.

A: Equivalent to showing
∑

k

[
â†kâk, â

†
i âj

]
= 0. Use

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ] B̂ and [â†i , âj ] = δij .
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Beamsplitter transformation

attract
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Action of general beamsplitter on mode operators,(
â′1
â′2

)
=

(
cos θ eiφ sin θ

−e−iφ sin θ cos θ

)
︸ ︷︷ ︸

≡VBS

(
â1
â2

)

where V †
BSVBS = I and detVBS = 1.

Easy to show that

|0⟩ VBS−→ cos θ |0⟩+ e−iφ sin θ |1⟩ ,

|1⟩ VBS−→ −eiφ sin θ |0⟩+ cos θ |1⟩ .
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Poll 3: Pauli-X with a beam splitter

Consider two input modes â1 and â2 into a general beam splitter
transformation with outputs â′1 and â′2 given as,(

â′1
â′2

)
=

(
cos θ eiφ sin θ

−e−iφ sin θ cos θ

)(
â1
â2

)
.

Up to a global phase, can we implement the Pauli-X matrix X =
(
0 1
1 0

)
with this transformation?

(A) Yes

(B) No
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Answer 3: Pauli-X with a beam splitter

Consider two input modes â1 and â2 into a general beam splitter
transformation with outputs â′1 and â′2 given as,(

â′1
â′2

)
=

(
cos θ eiφ sin θ

−e−iφ sin θ cos θ

)(
â1
â2

)
.

Up to a global phase, can we implement the Pauli matrix X =
(
0 1
1 0

)
with

this transformation?

(A) Yes

(B) No

Choose, e.g., θ = φ = π/2. Substitute into rotation matrix above to find(
0 eiπ/2

eiπ/2 0

)
∝ X. This is because cos(π/2) = 0, sin(π/2) = 1, and

−e−iπ/2 = eiπ/2.
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Exercise 3: Hadamard

Q: Transformation matrices for phase shifts and beamsplitter,

Vϕ =

(
eiϕ1 0
0 eiϕ2

)
and VBS =

(
cos θ eiφ sin θ

−e−iφ sin θ cos θ

)
.

What combination of phase-shifters and beamsplitters produces the
Hadamard matrix, H = 1√

2

(
1 1
1 −1

)
?

A: Choose ϕ1 = 0, ϕ2 = π s.t. Vϕ =
(
1 0
0 −1

)
, and choose θ = π/4 and

φ = π/2 s.t. VBS = 1√
2

(
1 1
−1 1

)
. Then H = VϕVBS.
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Spatial, polarization, and time-bin encodings

When choosing photonic dof for encoding, questions to consider:
Is the dof easy to manipulate?
Is the dof robust to relevant noise sources?
If necessary, can we scale-up for quantum information processing with
many photons?

Answers to these questions depend on context.
Common encodings:
(i) Spatial : Photon with fixed frequency ω, polarization etc., but may

traverse two distinct paths k = 1, 2. Interaction by overlapping paths
at, e.g., beamsplitters. Phase shifts via path lengths s.t. ϕk = ωLk/c.

(ii) Polarization: Photon with fiexed frequency, spatial path etc., but may
be in a superposition of polarization states. Horizontal H and vertical
V polarization define logical states, |0⟩ = |H⟩ and |1⟩ = |V ⟩.
Birefringent materials implement single-photon operations.

(iii) Time-bin: Photon with fixed frequency, polarization, spatial path etc.,
but may occupy two distinct time-binned intervals k = e, l (e for early,
l for late). Fast optical switches and delays implement single-photon
operations.
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Swapping encodings: Polarization to spatial

Swapping between encodings is possible
E.g., given two polarization modes H,V and two spatial modes 1, 2,
implement a polarizing beamsplitter (PBS) s.t.

âH,1 → âH,1 and âH,2 → âH,2,

âV,1 → âV,2 and âV,2 → âV,1.

H gets transmitted while V gets reflected. Follow up by a polarization
rotation results in swap from polarization qubit to spatial qubit
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SINGLE PHOTON EVOLUTION
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Single-photon evolution through thermal loss channel

Most communication links (i.e., quantum channels) are over noisy
fibers or free-space links, which can be accurately described by
thermal loss channels
Focus on the action of a thermal loss channel Lη,NB

on a
single-photon state ρ1
Physically, background quanta NB can be the population of the
environment—originating from, e.g., the sun, the moon, or
background lights for free-space links—whereas the loss probability
1− η of the channel is equal to the absorption probability of the
medium.
E.g., given a fiber of length L, η = e−αL where α is an attenuation
coefficient (typically quoted in dB/km). The exponential attenuation
is a consequence of the Beer-Lambert law for absorptive media.
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Thermal loss: Channel decomposition

Consider a thermal-loss channel Lη,NB
which has the following

decomposition Lη,NB
= AG,0 ◦ Lτ,0 with

τG = η and
G− 1

1−Gτ
= NB.

Parameters τ and G are related to η and NB via

G = (1− η)NB + 1 and τ =
η

(1− η)NB + 1
.

To show decomposition:
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Thermal loss: Operator-sum representation

Consider Kraus operators {Âℓ}∞ℓ=0 of pure-loss channel Lτ,0

Âℓ =

√
(1− τ)ℓ

ℓ!
τ â

†â/2âℓ.

Consider Kraus operators {B̂k}∞k=0 of quantum-limited amplifier AG,0,

B̂k =

√
1

k!

1

G

(
G− 1

G

)k

â†kG−â†â/2.

Using Lη,NB
= AG,0 ◦ Lτ,0, thermal loss channel then has

Lη,NB
(ρ) =

∞∑
ℓ=0

∞∑
k=0

B̂kÂℓρÂ
†
ℓB̂

†
k.
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Thermal loss: single-photon input
Lη,NB

(ρ1) =
∑∞

ℓ=0

∑∞
k=0 B̂kÂℓρ1Â

†
ℓB̂

†
k

Consider single-photon input ρ1 with output Lη,NB
(ρ1).

Terms Âℓρ1Â
†
ℓ are only non-zero when ℓ = 0, 1. Thus,

Â0ρ1Â
†
0 = τρ1 and Â1ρ1Â

†
1 = (1− τ) |vac⟩⟨vac| .

With probability τ , the photon is transmitted. With probability 1− τ ,
the photon is lost.
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Poll 4: Pure loss and erasure cont.

When acting on a single-photon state ρ1, the pure-loss channel Lτ is
equivalent to an erasure channel Lε with erasure probability ε = 1− τ .
What is the erasure state in this case? [Hint: Note that we are losing
photons via loss.]

(A) Vacuum state

(B) Completely mixed single-photon state

(C) State with ≥ 2 photons
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Answer 4: Pure loss and erasure cont.

When acting on a single-photon state ρ1, the pure-loss channel Lη is
equivalent to an erasure channel Lε with erasure probability ε = 1− η.
What is the erasure state in this case? [Hint: Note that we are losing
photons via loss.]

(A) Vacuum state

(B) Completely mixed single-photon state

(C) State with ≥ 2 photons

Explicitly, Lτ (ρ1) = τρ1 + (1− τ) |vac⟩⟨vac|. With probability τ , the
photon is transmitted, and with probability 1− τ , the photon is lost.
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Thermal loss: single-photon input cont.
Lη,NB

(ρ1) =
∑∞

ℓ=0

∑∞
k=0 B̂kÂℓρ1Â

†
ℓB̂

†
k

More complicated for amplifier AG,0 due to adding photons

Relevent operators are B̂k for k = 0, 1,

B̂0 =

√
1

G
G−â†â/2 and B̂1 =

√
1

G

(
G− 1

G

)
â†G−â†â/2.

Appending to pure-loss channel leads to,

(1) B̂0Â0ρ1Â
†
0B̂0 = τ

G2 ρ1; photon is unaffected by the channel

(2) B̂1Â0ρ1Â
†
0B̂1 = 2(G−1)

G3 τρ2; one noisy photon added to state.

(3) B̂0Â1ρ1Â
†
1B̂0 = (1−τ)

G |vac⟩⟨vac|; photon is just lost.

(4) B̂1Â1ρ1Â
†
1B̂1 = G−1

G2 (1− τ)Θ1; photon is lost and replaced with a

single noisy photon state Θ1. [Θ1 = Î/2 for completely mixed photonic
qubit.]
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Thermal loss: single-photon input cont.
Lη,NB

(ρ1) =
∑∞

ℓ=0

∑∞
k=0 B̂kÂℓρ1Â

†
ℓB̂

†
k

Overall

Lη,NB
(ρ1) =

τ

G2
ρ1 +

G− 1

G2
(1− τ)Θ1 +

(1− τ)

G
|vac⟩⟨vac|

+
(G− 1)2 + 2τ(G− 1)

G2
ρ≥2 photons,

where ρ≥2 photons is a quantum state with more than two photons.
Transmission event probabilities,

psuccess =
τ

G2
=

η

[(1− η)NB + 1]3
(successful transmission)

pΘ1 =
G− 1

G2
(1− τ) =

(1− η)2NB(NB + 1)

[(1− η)NB + 1]3
(random photon)

pvac =
(1− τ)

G
=

(1− η)(NB + 1)

[(1− η)NB + 1]2
(receive nothing)

p≥2 = 1− psuccess − pdepolarizing − pvac (receive ≥ 2 photons)
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Exercise 4: Low thermal noise
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Q: Assume NB ≪ 1. Expand psuccess, pΘ1 , and pvac to first order in NB.
Show that p≥2 = 2η(1− η)NB +O

(
N2

B

)
. Can you intuitively explain

result?
A: Expanding previous expressions,

psuccess =
η

[(1− η)NB + 1]3
≈ η (1− 3NB(1− η)) +O(NB)

2

pΘ1 =
(1− η)2NB(NB + 1)

[(1− η)NB + 1]3
≈ (1− η)2NB +O

(
N2

B

)
pvac =

(1− η)(NB + 1)

[(1− η)NB + 1]2
≈ (1− η) (1− (1− 2η)NB) +O

(
N2

B

)
.

Then, p≥2 = 1− psuccess − pΘ1 − pvac ≈ 2η(1− η)NB +O
(
N2

B

)
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RECAP AND EXIT SURVEY
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Course recap

Briefly discussed how photons are good for just about anything
(sensing, computing, communication)
Reviewed general description of evolution and quantum channels
(Kraus operators, purification, unitary extension)
Analyzed Gaussian bosonic channels (loss, amplifier, AGN) and their
influence at single-photon level
Surveyed single-photon encodings and single-qubit operations (e.g.,
passive operations on dual-rail qubit)
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Quantum communication
Quantum key distribution 
Quantum teleportation 
Quantum network 
Entanglement-assisted communication 
. . . . . .

Quantum sensing
Using non-classical source to enhance 
hypothesis testing and parameter 
estimation 
. . . . . .

Quantum computing
Quantum adiabatic algorithms 
Quantum circuit model 
Measurement-based quantum computing 
NISQ quantum computation 
Quantum machine learning

Enabling 
non-classical  
resource 
at distance

As sub-routine in  
communication  
and computing

Enables receiver design, 
Basic components

LIGO

Quantum 
satellite

Quantum computer 
IBM, >50 qubits, 
Google supremacy, 

1
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Course Evaluation Survey

We value your feedback on all aspects of this 
short course. Please go to the link provided 
in the Zoom Chat or in the email you will 
soon receive to give your opinions of what 
worked and what could be improved. 

CQN Winter School on Quantum Networks
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