Theory of quantum channels for quantum networks

Instructor: Quntao Zhuang
- University of Southern California
Co-Instructor: Anthony J. Brady
- University of Arizona

CQN Winter School on Quantum Networks

Funded by National Science Foundation Grant \#1941583

Wale
NGRTHERN
HOWARD

Table of contents

(1) Introduction and motivation
(2) Quantum channels: general description
(3) Gaussian bosonic channels

4 Single photon encodings
(5) Single photon evolution
(6) Recap and exit survey

INTRODUCTION AND MOTIVATION

The era of quantum engineering

Using non-classical source to enhance hypothesis testing and parameter estimation

Quantum communication

As sub-routine in communication and computing

Quantum key distribution
Quantum teleportation
Quantum network

Entanglement-assisted communication

Enabling

 non-classical resourceat distance
Quantum satellite

Quantum computing
Quantum adiabatic algorithms Quantum circuit model
Measurement-based quantum computing
NISQ quantum computation
Quantum machine learning
Enables receiver design,
Basic components

Quantum networking

Many physical platforms and systems

(But we'll focus on photons...)

Poll 0: Photonic quantum information processing

What are photons good for?
(A) Quantum sensing
(B) Quantum computing
(C) Quantum communication
(D) All of the above

Answer 0: Photonic quantum information processing

What are photons good for?
(A) Quantum sensing
(B) Quantum computing
(C) Quantum communication
(D) All of the above

Photons are very versatile. Several quantum computing approaches exists that are based on linear optics, microwave cavity modes, etc. Quantum sensing platforms have been demonstrated with microwave cavities, quantum optical setups, etc. Finally, quantum information processing across long distances will require quantum optical interlinks.

QUANTUM CHANNELS: GENERAL DESCRIPTION

Quantum Physics principle:
our universe is elvoving under unitary dynamics.
\rightarrow if we include everything relevant, it's always un'toy
\rightarrow if we include everything relevant, it's always pure. example: thermalization environment
system _bath. + anything else

Mixed State : coming from partial trace Universe: $\quad S+E$ in a pure state $|\Psi\rangle_{S E}$ partial trace: $\quad \rho_{S}=\operatorname{tr}_{E}\left(|\Psi\rangle_{S E}\langle\underline{ }\langle)\right.$
 (singular value)

$$
\begin{aligned}
& \rho_{s}=\sum_{|j\rangle_{E}}\langle j| \sum_{i} \sqrt{\lambda_{i_{1}}\left|i_{1}\right\rangle_{J}\left|i_{1}\right\rangle_{E}} \underset{\sum_{i_{i}} \sqrt{\lambda_{i_{2}}}\left\langle i_{2}\right|,\left\langle i_{2}\right| E|j\rangle}{ } \\
&=\sum_{j} \underbrace{}_{j}|j\rangle_{s}\left\langle\left. j\right|^{2}\right. \\
& \text { eigenvalues of } \hat{P}_{S}
\end{aligned}
$$

Inverse the process: purification.
Universe: $\quad S+E$ in a pure state $|\Psi\rangle_{S E}$
(unitary degree of freedom: $|\Psi\rangle_{S E} \rightarrow \mathbb{I}_{S}\left(\theta\left(\hat{U}_{\sigma} \mid \Psi \Psi_{S E}\right.\right.$ $\quad \sin t$ state $\quad|\Psi\rangle_{S E}=\sum_{i} \sqrt{\lambda_{i}}|i\rangle_{S}|i\rangle_{E}$ append environment. E, bases $\left\{|j\rangle_{E}\right\} \rightarrow$ free to choose C $\left\{U_{E}|j\rangle_{E}\right\}$ $\left.\begin{aligned} & \text { Start from } \\ & \text { mixed state. }\end{aligned} \rho_{s}=\sum_{j} \lambda_{j}|j\rangle_{s} \leq j \right\rvert\,$ eigenvalues of \hat{P}_{s}
dynamiss: unitary

Quantum chanel (CPTP maps)

What is the state of the system after evoltin?

$$
\hat{\rho}_{S}^{\prime}=\operatorname{tr}_{E}\left[\hat{u}_{S E}\left(\hat{P}_{S} \otimes \hat{\sigma}_{E}\right) \hat{u}_{S}^{+}\right]
$$

observe: (1) all operations involved are linear (due to $Q M$)
(2) it's a map between input state $\hat{\rho}_{s} \rightarrow \hat{p}_{s}^{\prime}$ math language: completely positive trace preserving (CPTP)

Chantum channels: coming from unitary evolutions

$$
\mathcal{N}\left(\rho_{S}\right)=\operatorname{tr}_{E}\left\{\hat{U}_{S E}\left(\rho_{S} \otimes O_{E}\right) \hat{U}_{S E}^{+}\right\}
$$

to further simplify: $\sigma_{E}=\left|e_{0}\right\rangle\left\langle\left. e_{0}\right|_{E}\right.$
why pine? \leftarrow if not we con purify it and make the eqvirument
then pick a bases $\left\{\left|e_{k}\right\rangle_{\in}\right\}$. larger.

$$
\begin{aligned}
\mathcal{N}\left(\rho_{s}\right) & =\sum_{k}\left\langle e_{k}\right| \hat{u}_{s e} \rho_{s} \otimes\left|e_{0}\right\rangle\left(e_{0}\left|\hat{u}_{s t}^{+}\right| e_{k}\right\rangle \\
& =\sum_{k}\left(\left\langle e_{k}\right| \hat{u}_{s c}\left|e_{0}\right\rangle\right) P_{s}\left(\left\langle e_{0}\right| \hat{u}_{s \tau}^{+}\left|e_{k}\right\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{N}\left(\rho_{s}\right) & =\sum_{k}\left\langle e_{k}\right| \hat{U}_{s e} \rho_{s} \otimes\left|e_{0}\right\rangle\left\langle e_{0}\right| \hat{U}_{s t}^{+}\left|e_{k}\right\rangle \\
& =\sum_{k}\left(\left\langle e_{k}\right| \hat{U}_{s c}\left|e_{0}\right\rangle\right) P_{s}\left(\left\langle e_{0}\right| \hat{U}_{s e}^{+}\left|e_{k}\right\rangle\right) \\
& =\sum_{k} \hat{L}_{k} \rho_{s} \hat{L}_{k}^{+} \\
\hat{L}_{k} & \equiv\left\langle e_{k}\right| \hat{U}_{s t}\left|e_{0}\right\rangle \quad \text { krows uperators. }
\end{aligned}
$$

completeness. $\sum_{k}\left|e_{k}\right\rangle\left\langle\left. e_{k}\right|_{t}=\mathbb{I}_{E}\right.$.

$$
\left.\Rightarrow \sum_{k} \hat{L}_{k}^{+} \hat{L}_{k}=\sum_{k}\left\langle e_{0}\right| \hat{U}_{S T}^{+}\left|e_{k}\right\rangle\left\langle e_{k}\right| \hat{U}_{T}\left|e_{0}\right\rangle=\left\langle_{E}\right| e_{0}\left|\mathbb{I}_{S E}\right| e_{0}\right\rangle_{E}=\mathbb{I}_{S}
$$

Examples: Erasure and Depolarizing

$\mathcal{L}_{\varepsilon}$: Consider a two-level quantum system (a qubit) described by the quantum state $\Psi \in \mathscr{H}$, and consider the "erasure state" $|\varepsilon\rangle$ which lies outside of \mathscr{H} (i.e., $\langle\varepsilon| \Psi|\varepsilon\rangle=0 \forall \Psi \in \mathscr{H}$). An erasure channel $\mathcal{L}_{\varepsilon}$ acts on the qubit as,

$$
\mathcal{L}_{\varepsilon}(\Psi)=(1-\varepsilon) \Psi+\varepsilon|\varepsilon\rangle\langle\varepsilon|,
$$

where $0 \leq \varepsilon \leq 1$ is the erasure probability.
Δ_{p} : Given a qubit Ψ, a depolarizing channel Δ_{p} acts as follows,

$$
\Delta_{p}(\Psi)=(1-p) \Psi+p \hat{I} / 2
$$

where $\hat{I} / 2$ is the maximally mixed state and $0 \leq p \leq 4 / 3$.
unitan extansion / isometric extersion

$$
\mathcal{N}(\rho)=\operatorname{tr}_{E}\left[\operatorname{U}_{\mathcal{S}}\left(\rho_{S} \otimes \sigma_{E}\right) U_{S E}^{+}\right]
$$

untary extension. $U_{S E E}^{+} U_{S E}=U_{S E} U_{S E}^{+}=\mathbb{I}_{S E}$.
isometry: lazy version of untary extension.

$$
\begin{array}{ll}
\hat{V}_{S \rightarrow S E}=\sum_{k} \hat{L}_{k} \otimes\left|e_{k}\right\rangle & \hat{V}_{S \rightarrow S E}^{+} \hat{V}_{S \rightarrow S E}=\mathbb{I}_{S} \\
N\left(\rho_{S}\right)=\operatorname{tr}_{E}\left[V_{S \rightarrow S E} \rho_{S} V_{S \rightarrow E}^{+}\right] & V_{S \rightarrow S E} V_{S \rightarrow S E}^{+}=\mathbb{I}_{S E}
\end{array}
$$

Why unitary extension \& purifleation is useful? theorecticad tool for QIP anayses.
 e.g.

Quontum capacity. (single-letter)

$$
\begin{gathered}
Q_{(N)}^{(1)}=\max _{P_{S}} S\left(N\left(P_{S}\right)\right)-S\left(N^{c}\left(P_{S}\right)\right) \\
S\left(N^{(}\left(P_{S}\right)\right)=S\left(E^{\prime}\right)=S\left(A^{\prime} S^{\prime}\right) \\
\| \\
S\left(N \otimes I\left(\psi_{e_{s}}\right)\right)
\end{gathered}
$$

Poll 1: Concatenated erasures

Consider two erasure channels $\mathcal{L}_{\varepsilon_{1}}$ and $\mathcal{L}_{\varepsilon_{2}}$ where, e.g., $\mathcal{L}_{\varepsilon}(\Psi)=(1-\varepsilon) \Psi+\varepsilon|\varepsilon\rangle\langle\varepsilon|$ for some state Ψ. The concatenation of the two erasure channels is another erasure channel, $\mathcal{L}_{\varepsilon_{12}}=\mathcal{L}_{\varepsilon_{2}} \circ \mathcal{L}_{\varepsilon_{1}}$. What is the erasure probability ε_{12} ? [Hint: The erasure probability is 1 minus the transmission probability.]
(A) $\left(\varepsilon_{1}+\varepsilon_{2}\right) / 2$
(B) $\varepsilon_{1} \varepsilon_{2}$
(C) $1-\left(1-\varepsilon_{1}\right)\left(1-\varepsilon_{2}\right)$

Answer 1: Concatenated erasures

Consider two erasure channels $\mathcal{L}_{\varepsilon_{1}}$ and $\mathcal{L}_{\varepsilon_{2}}$ where, e.g., $\mathcal{L}_{\varepsilon}(\Psi)=(1-\varepsilon) \Psi+\varepsilon|\varepsilon\rangle\langle\varepsilon|$ for some state Ψ. The concatenation of the two erasure channels is another erasure channel, $\mathcal{L}_{\varepsilon_{12}}=\mathcal{L}_{\varepsilon_{2}} \circ \mathcal{L}_{\varepsilon_{1}}$. What is the erasure probability ε_{12} ? [Hint: The erasure probability is 1 minus the transmission probability.]
(A) $\left(\varepsilon_{1}+\varepsilon_{2}\right) / 2$
(B) $\varepsilon_{1} \varepsilon_{2}$
(C) $1-\left(1-\varepsilon_{1}\right)\left(1-\varepsilon_{2}\right)$

State either gets transmitted or erased. Transmission probability for first channel is $\left(1-\varepsilon_{1}\right)$. Transmission probability for second channel is $\left(1-\varepsilon_{2}\right)$. Total transmission probability is the product of probabilities $\left(1-\varepsilon_{1}\right)\left(1-\varepsilon_{2}\right)$. Erasure probability is thus $1-\left(1-\varepsilon_{1}\right)\left(1-\varepsilon_{2}\right)$.

GAUSSIAN BOSONIC CHANNELS

Recall: Quantum harmonic oscillator

- Free EM field is bosonic field described by harmonic oscillator-like Hamiltonian $\hat{H}_{\text {osc }}=\frac{\hbar \omega}{2}\left(\hat{q}^{2}+\hat{p}^{2}\right)$ with frequency ω

- Canonical position \hat{q} and momentum \hat{p} (quadratures) obey CCR $[\hat{q}, \hat{p}]=i \hat{I}$
- Annihilation operator \hat{a} related via

$$
\hat{a}=\frac{1}{\sqrt{2}}(\hat{q}+i \hat{p}) \text { s.t. }\left[\hat{a}, \hat{a}^{\dagger}\right]=\hat{I}
$$

- Equivalently, $\hat{H}_{\text {osc }}=\hbar \omega \hat{n}+\hbar \omega / 2$ with number operator $\hat{n} \equiv \hat{a}^{\dagger} \hat{a}$ and eigenstate (Fock state) $|n\rangle$ where $n \in \mathbb{Z}^{+}$.
- Explicitly, $|n\rangle=\frac{\left(\hat{a}^{\dagger}\right)^{n}}{\sqrt{n!}}|\mathrm{vac}\rangle$. Then, $\hat{a}|n\rangle=\sqrt{n}|n-1\rangle$ and $\hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$. Note $\hat{a}|\mathrm{vac}\rangle=0$.

Gaussian bosonic channels.
introduce vector of operator for N-mode system:

$$
\hat{x}=\left(\hat{q}_{1}, \hat{p}_{1}, \hat{q}_{2}, \hat{p}_{2}, \cdots, \quad \hat{q}_{N}, \hat{p}_{N}\right)
$$

commutation reation.

$$
\begin{aligned}
& {\left[\hat{x}_{i}, \hat{x}_{j}\right]=i \Omega_{i j}} \\
& \Omega=\left(\begin{array}{cccc}
0 & 1 & 0 \\
-1 & 0 & \\
0 & 0 & 1 \\
0 & -1 & 0 & \ddots
\end{array}\right) \quad \begin{array}{l}
\text { sympleitic. } \\
\text { metric }
\end{array}
\end{aligned}
$$

We will follow the previous approach, start from unitary and then to quantum channels for bosonic systems.

Unitary $U(t)=e^{-i \beta t}$ is generateal from \hat{H}
$\left\{\begin{array}{l}\text { Gaussian: } \hat{H} \text { sand outer in } \hat{p}, \hat{q} \text {. e.g. } \hat{p}^{2}, \hat{p} \hat{q}, \hat{q}^{2} \\ \text { hon-Gaussion } \hat{H} \text { higher order in } \hat{p}, \hat{q} \text { e.g. } \hat{p}^{3}, \hat{q}, \ldots\end{array}\right.$
Gaussian unitary is nice be cause $\hat{U}_{s, d} \star \hat{X}_{s, d}=S \hat{x}+d$ using Hadomand lemma $e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\cdots$
linear Hamiltonian: displace mont.

$$
\begin{aligned}
& \hat{H}_{\text {displacement }}=i\left(\alpha \hat{a}^{4}-\alpha^{*} \hat{a}\right)=\sqrt{2}(\operatorname{Re} \alpha \hat{p}-\operatorname{Im} \alpha \hat{q}) \\
& \hat{D}^{+}(\alpha) \hat{a} \hat{D}(\alpha)=\hat{a}+\alpha
\end{aligned}
$$

$\hat{D}(\alpha)|0\rangle=|\alpha\rangle$, produces coherent state (laser) when acting on vacuum.
multi-mode $\hat{D}^{+}(\vec{\xi}) \hat{x} \vec{D}(\vec{\xi})=\overrightarrow{\vec{x}}+\vec{\xi}$ orthogonal \& complete. (annoy to Pauli operator)

$$
\operatorname{tr}\left[\hat{D}(\vec{\zeta}) \hat{D}\left(\vec{\zeta}^{\prime}\right)\right]=\pi^{N} \delta\left(\stackrel{\rightharpoonup}{\zeta}^{\prime}+\vec{\zeta}^{\prime}\right)
$$

linear Hamiltonian: displacement.

$$
\operatorname{tr}\left[\hat{D}(\vec{\zeta}) \hat{D}\left(\vec{\zeta}^{\prime}\right)\right]=\pi^{N} \delta\left(\dot{\vec{\zeta}}+\vec{\zeta}^{\prime}\right)
$$

Wigner characteristic function

$$
X(\vec{\xi} ; \hat{A})=\operatorname{Tr}[\hat{A} \hat{D}(\vec{\xi})]
$$

Whiner function

$$
W(\vec{x} ; \hat{A})=\int \frac{d^{2 N} s}{(2 \pi)^{22}} \exp \left(-i \vec{x}^{+} \Omega \vec{\zeta}\right) X(\vec{\xi} ; \hat{A})
$$

Gaussion unitary: properties.

$$
\begin{gathered}
\hat{U}_{s, d}^{+} \hat{x} \hat{U}_{s, d}=S \hat{x}+d \\
X\left(S ; \hat{U}_{s, d} \hat{A}_{\hat{U}}^{s, d}+\right. \\
W\left(x ; \hat{U}_{s, d} \hat{A}_{\hat{U}}^{s, d}+\right. \\
W\left(S^{-1} \delta ; \hat{A}\right) e^{\left.i d^{\top} \Omega\right\}} \\
W\left(S^{-1}(x-d) ; \hat{A}\right)
\end{gathered}
$$

Mansion unitary are coordinate transforms in phase we omit Δ for vertus without canning confusim space.

Gaussien unitay: phase notation
quadratle: $\hat{H}=\hat{a}^{+} \hat{a}$
(Gausian) phase rotation $\hat{R}(\theta) \hat{a} \hat{R}(\theta)=e^{-i \theta} \hat{a}$

Models free propogation â y eion â q

Gaussion unitay: single-mode squeery.

$$
\hat{H} \propto i\left(\hat{a}^{2}-\hat{a}^{+2}\right)
$$

single-mode squeering $S^{+}(r) a s(r)=\cosh r \hat{G}-\sinh r \hat{G}^{t}$
sonetima we let $G=(\cosh r)^{2}$ so that

Geussion unitay: beamsplititer

$$
\begin{aligned}
& H \propto \hat{a} \hat{b}^{+}+\hat{a}^{+} \hat{b}^{-} \\
& \left\{\begin{array}{l}
\hat{a} \rightarrow \cos \theta \hat{a}+\sin \theta \hat{b} \\
\hat{b} \rightarrow \cos \theta \hat{b}-\sin \theta \hat{a}
\end{array}\right.
\end{aligned}
$$

Models keamsplitter.

Gomsisien unitoy:

$$
\hat{H} \propto \hat{a} \hat{b}-\hat{a}^{+} \hat{b}^{+}
$$

two-mode squeesing $\left\{\begin{array}{l}\hat{a} \rightarrow \sqrt{G} \hat{a}-\sqrt{a-1} \hat{b}^{+} \\ \hat{b} \rightarrow \sqrt{G} \hat{b}-\sqrt{a-1} \hat{a}^{+}\end{array}\right.$
generates two-mode squeezel vacoum. bosonic version of EPR state
non-Gaussion unitang
higher-order
$H=\hat{q}^{3}$. cubic phase gate.
(non-Gaussian)
$H=\hat{n}^{2}$ kerr nonlinavi'?.

Gaussian channel:
(1) unitary chanel. ecg. displacement channel
(2) thermal loss channel.

$$
\begin{aligned}
& \hat{a}^{\prime}=\sqrt{\eta} \hat{a}+\sqrt{1-\eta} \hat{e} \\
& \left\langle\hat{e}^{+} \hat{e}\right\rangle=N_{B} .
\end{aligned}
$$

denote as $\mathcal{L}_{\eta, N_{B}}$
models light propagation in fiker free space eft.

Poll 2: Pure loss and erasure

A pure-loss channel \mathcal{L}_{η} has an operator sum representation

$$
\begin{equation*}
\mathcal{L}_{\eta}(\rho)=\sum_{\ell=0}^{\infty} \hat{A}_{\ell} \rho \hat{A}_{\ell}^{\dagger} \tag{1}
\end{equation*}
$$

with Kraus operators

$$
\begin{equation*}
\hat{A}_{\ell}=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} \eta^{\hat{a}^{\dagger} \hat{a} / 2} \hat{a}^{\ell} \tag{2}
\end{equation*}
$$

How many Kraus operators do we need to describe the output $\mathcal{L}_{\eta}\left(\rho_{1}\right)$ for a single-photon input state ρ_{1} ? [Hint: focus on the \hat{a}^{ℓ} term and recall that \hat{a} annihilates the vacuum.]
(A) 1
(B) 2
(C) 3

Answer 2: Pure loss and erasure

A pure-loss channel \mathcal{L}_{η} has an operator sum representation

$$
\begin{equation*}
\mathcal{L}_{\eta}(\rho)=\sum_{\ell=0}^{\infty} \hat{A}_{\ell} \rho \hat{A}_{\ell}^{\dagger} \tag{3}
\end{equation*}
$$

with Kraus operators

$$
\begin{equation*}
\hat{A}_{\ell}=\sqrt{\frac{(1-\eta)^{\ell}}{\ell!}} \eta^{\hat{a}^{\dagger} \hat{a} / 2} \hat{a}^{\ell} \tag{4}
\end{equation*}
$$

How many Kraus operators do we need to describe the output $\mathcal{L}_{\eta}\left(\rho_{1}\right)$ for a single-photon input state ρ_{1} ? [Hint: Focus on the \hat{a}^{ℓ} term and recall that \hat{a} annihilates the vacuum.]
(A) 1
(B) 2
(C) 3

For single-photon state ρ_{1} and $\ell \geq 2, \hat{a}^{\ell} \rho_{1} \hat{a}^{\ell \dagger}=0$ because $\hat{a} \rho_{1} \hat{a}^{\dagger} \propto|\operatorname{vac}\rangle\langle\operatorname{vac}|$ and $\hat{a}|\operatorname{vac}\rangle\langle\operatorname{vac}| \hat{a}^{\dagger}=0$. Thus only first two Kraus operators $(\ell=0,1)$ are necessary (and given by $\hat{A}_{0}=\sqrt{\eta} \hat{I}$ and $\left.\hat{A}_{1}=\sqrt{1-\eta} \hat{a}\right)$.

Gassian channel.
thermal-ampifior channel. two -mede squiring.

$$
\langle\hat{e}+\hat{e}\rangle=N_{B} .
$$

additive Gaussian noise (AGN)
mix noise N_{B}
$N_{N_{B}}=\lim _{\eta \rightarrow 1} \mathcal{L}_{\eta, \frac{N_{B}}{1-\eta} \rightarrow \min _{\substack{\text { in }}} \text { the output }}$

Gaussion channel concatenation

$$
\begin{aligned}
& \sum_{\eta_{2}, N_{2}} \circ \mathcal{L} \eta_{1, N_{1}}: \\
& \hat{a}^{\prime}=\sqrt{\eta_{1}} \hat{a}+\sqrt{1-\eta_{1}} \hat{e}_{1} \\
& \hat{a}^{\prime \prime}=\sqrt{\eta_{2}} \hat{a}^{\prime}+\sqrt{1-\eta_{2}} \hat{e}_{2}=\cdots=\sqrt{\eta_{1} \eta_{2}} \hat{a}^{+}+\sqrt{1-\eta_{1} \eta_{2}} \hat{e}_{3} \\
& \hat{e}_{3}=\frac{\sqrt{\eta_{2}\left(1-\eta_{1}\right)} \hat{e}_{1}+\sqrt{1-\eta_{2}} \hat{e}_{2}}{\left(1-\eta_{1} \eta_{2}\right)} \\
& \left\langle\eta_{1} \eta_{2}, N_{3} \quad N_{3}=\frac{\eta_{2}\left(1-\eta_{1}\right) N_{1}+\left(1-\eta_{2}\right) N_{2}}{1-\eta_{1} \eta_{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& A_{G, N_{2}} \circ \mathcal{L} \eta, N_{1} \\
& \hat{a}^{\prime \prime}=\sqrt{a_{1}} \hat{a}+\left(\sqrt{G} \sqrt{1-\eta} \hat{e}_{1}+\sqrt{C_{-1}} \hat{e}_{2}^{+}\right)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
G \eta<1 \text { overall thermal to s } \quad \mathcal{L}_{C \eta}, N_{3} \\
\qquad N_{3}=\frac{G(1-\eta) N_{1}}{1-G_{\eta}}+\frac{G-1}{1-G_{\eta}}\left(N_{2}+1\right) \\
G \eta=1 .
\end{array} \quad A G N . \quad N_{N_{B}} \quad N_{B}=(G-1)\left(N_{1}+N_{2}+1\right) .\right.
$$

$G \eta>1$ thermal amplifier $A_{C \eta}, N_{4}$

$$
N_{4}=\frac{G(1-\eta)}{G_{\eta}-1}\left(N_{1}+1\right)+\frac{G-1}{C \eta-1} N_{2}
$$

Exercise 1: Amplifier-then-loss is less noisy

Q: From before, we have that $\mathcal{N}_{N_{B_{1}}}=\mathcal{A}_{G, N_{2}} \circ \mathcal{L}_{\eta, N_{1}}$ for $G \eta=1$, where $N_{B_{1}}=(G-1)\left(N_{1}+N_{2}+1\right)$. Show that $\mathcal{N}_{N_{B_{2}}}=\mathcal{L}_{\eta, N_{1}} \circ \mathcal{A}_{G, N_{2}}$ for $G \eta=1$ and give $N_{B_{2}}$ explicitly. Prove that $N_{B_{2}}<N_{B_{1}}$. Hence, amp-loss is less noisy than loss-amp.
A: Use similar tricks and prove at level of annihilation operators.

$$
\begin{aligned}
\hat{a} \xrightarrow{\mathcal{A}_{G, N_{2}}} \hat{a}^{\prime} & =\sqrt{G} \hat{a}+\sqrt{G-1} \hat{e}_{2}^{\dagger} \\
\hat{a}^{\prime} \xrightarrow{\mathcal{L}_{\eta, N_{1}}} \hat{a}^{\prime \prime} & =\sqrt{\eta} \hat{a}^{\prime}+\sqrt{1-\eta} \hat{e}_{1} .
\end{aligned}
$$

Then $\hat{a}^{\prime \prime}=\sqrt{\eta G} \hat{a}+\sqrt{1-\eta G}\left(\frac{\sqrt{\eta(G-1)} \hat{e}_{2}^{\dagger}+\sqrt{1-\eta} \hat{e}_{1}}{\sqrt{1-\eta G}}\right)$. Equivalent to AGN $\mathcal{N}_{B_{2}}$ in limit $\eta G \rightarrow 1$ with $N_{B_{2}}=(1-\eta)\left(N_{2}+N_{1}+1\right)$. Since $1-\eta=(G-1) / G$ and $(G-1) / G<G-1$, then $N_{B_{2}}<N_{B_{1}}$.

SINGLE PHOTON ENCODINGS

Dual-rail qubit

- Photons have many degrees of freedom (polarization, spatial, angular momentum etc.).
- Each dof can described by set of mode operators $\left\{\hat{a}_{k}\right\}_{k=1}^{M}$ where M is the number of orthogonal modes
- Generally focus on two modes $k \in\{1,2\}$ to define a photonic qubit. Logical states 0 and 1 are single-photon states

$$
|0\rangle=\hat{a}_{1}^{\dagger}|\mathrm{vac}\rangle \quad \text { and } \quad|1\rangle=\hat{a}_{2}^{\dagger}|\mathrm{vac}\rangle
$$

s.t. general dual-rail qubit $\Psi \in \operatorname{span}\{|0\rangle,|1\rangle\}$

- Technically, $|\mathrm{vac}\rangle=|\mathrm{vac}\rangle_{1} \otimes|\mathrm{vac}\rangle_{2}, \hat{a}_{1}^{\dagger}|\mathrm{vac}\rangle=\hat{a}_{1}^{\dagger} \otimes \hat{\mathbb{I}}|\mathrm{vac}\rangle_{1} \otimes|\mathrm{vac}\rangle_{2}$ etc.

Single qubit operations

- Single-qubit operations implemented with passive operations.
- Passive operations commute with total photon number $\hat{N}=\sum_{k=1}^{2} \hat{a}_{k}^{\dagger} \hat{a}_{k}$
- Consist of unitary beam splitters and phase-shifters, \hat{U}_{BS} and \hat{U}_{ϕ}, with Hamiltonians

$$
\begin{aligned}
\hat{H}_{\mathrm{BS}} & =i \theta \mathrm{e}^{i \varphi} \hat{a}_{1}^{\dagger} \hat{a}_{2}+\text { h.c. } \\
\hat{H}_{\phi} & =\sum_{k=1}^{2} \phi_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k}
\end{aligned}
$$

Exercise 2: Passive operations

Q: Show that any Hamiltonian of the form $\hat{H}=\sum_{i, j} H_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}$ commutes with the total photon number operator $\hat{N}=\sum_{k=1}^{2} \hat{a}_{k}^{\dagger} \hat{a}_{k}$.
A: Equivalent to showing $\sum_{k}\left[\hat{a}_{k}^{\dagger} \hat{a}_{k}, \hat{a}_{i}^{\dagger} \hat{a}_{j}\right]=0$. Use $[\hat{A} \hat{B}, \hat{C}]=\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B}$ and $\left[\hat{a}_{i}^{\dagger}, \hat{a}_{j}\right]=\delta_{i j}$.

Beamsplitter transformation

$$
|0\rangle \equiv\left\{\begin{array}{l}
\left.a_{1}^{+} \mid \text {val }\right\rangle \\
\mid \text { vac }\rangle
\end{array}\right\}|\Psi\rangle=\cos \theta|0\rangle+e^{-i \varphi} \sin \theta|1\rangle
$$

- Action of general beamsplitter on mode operators,

$$
\binom{\hat{a}_{1}^{\prime}}{\hat{a}_{2}^{\prime}}=\underbrace{\left(\begin{array}{cc}
\cos \theta & \mathrm{e}^{i \varphi} \sin \theta \\
-\mathrm{e}^{-i \varphi} \sin \theta & \cos \theta
\end{array}\right)}_{\equiv V_{\mathrm{BS}}}\binom{\hat{a}_{1}}{\hat{a}_{2}}
$$

where $V_{\mathrm{BS}}^{\dagger} V_{\mathrm{BS}}=\mathbb{I}$ and $\operatorname{det} V_{\mathrm{BS}}=1$.

- Easy to show that

$$
\begin{aligned}
& |0\rangle \xrightarrow{V_{\mathrm{BS}}} \cos \theta|0\rangle+\mathrm{e}^{-i \varphi} \sin \theta|1\rangle, \\
& |1\rangle \xrightarrow{V_{\mathrm{BS}}}-\mathrm{e}^{i \varphi} \sin \theta|0\rangle+\cos \theta|1\rangle .
\end{aligned}
$$

Poll 3: Pauli-X with a beam splitter

Consider two input modes \hat{a}_{1} and \hat{a}_{2} into a general beam splitter transformation with outputs \hat{a}_{1}^{\prime} and \hat{a}_{2}^{\prime} given as,

$$
\binom{\hat{a}_{1}^{\prime}}{\hat{a}_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \mathrm{e}^{i \varphi} \sin \theta \\
-\mathrm{e}^{-i \varphi} \sin \theta & \cos \theta
\end{array}\right)\binom{\hat{a}_{1}}{\hat{a}_{2}} .
$$

Up to a global phase, can we implement the Pauli-X matrix $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ with this transformation?
(A) Yes
(B) No

Answer 3: Pauli-X with a beam splitter

Consider two input modes \hat{a}_{1} and \hat{a}_{2} into a general beam splitter transformation with outputs \hat{a}_{1}^{\prime} and \hat{a}_{2}^{\prime} given as,

$$
\binom{\hat{a}_{1}^{\prime}}{\hat{a}_{2}^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \mathrm{e}^{i \varphi} \sin \theta \\
-\mathrm{e}^{-i \varphi} \sin \theta & \cos \theta
\end{array}\right)\binom{\hat{a}_{1}}{\hat{a}_{2}} .
$$

Up to a global phase, can we implement the Pauli matrix $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ with this transformation?
(A) Yes
(B) No

Choose, e.g., $\theta=\varphi=\pi / 2$. Substitute into rotation matrix above to find $\left(\begin{array}{c}0 \\ \mathrm{e}^{0 \pi / 2} \\ \mathrm{e}^{i \pi / 2}\end{array}\right) \propto X$. This is because $\cos (\pi / 2)=0, \sin (\pi / 2)=1$, and $-\mathrm{e}^{-i \pi / 2}=\mathrm{e}^{i \pi / 2}$.

Exercise 3: Hadamard

Q: Transformation matrices for phase shifts and beamsplitter,

$$
V_{\phi}=\left(\begin{array}{cc}
\mathrm{e}^{i \phi_{1}} & 0 \\
0 & \mathrm{e}^{i \phi_{2}}
\end{array}\right) \quad \text { and } \quad V_{\mathrm{BS}}=\left(\begin{array}{cc}
\cos \theta & \mathrm{e}^{i \varphi} \sin \theta \\
-\mathrm{e}^{-i \varphi} \sin \theta & \cos \theta
\end{array}\right) .
$$

What combination of phase-shifters and beamsplitters produces the Hadamard matrix, $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$?
A: Choose $\phi_{1}=0, \phi_{2}=\pi$ s.t. $V_{\phi}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, and choose $\theta=\pi / 4$ and $\varphi=\pi / 2$ s.t. $V_{\mathrm{BS}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$. Then $H=V_{\phi} V_{\mathrm{BS}}$.

Spatial, polarization, and time-bin encodings

- When choosing photonic dof for encoding, questions to consider:
- Is the dof easy to manipulate?
- Is the dof robust to relevant noise sources?
- If necessary, can we scale-up for quantum information processing with many photons?
- Answers to these questions depend on context.
- Common encodings:
(i) Spatial: Photon with fixed frequency ω, polarization etc., but may traverse two distinct paths $k=1,2$. Interaction by overlapping paths at, e.g., beamsplitters. Phase shifts via path lengths s.t. $\phi_{k}=\omega L_{k} / c$.
(ii) Polarization: Photon with fiexed frequency, spatial path etc., but may be in a superposition of polarization states. Horizontal H and vertical V polarization define logical states, $|0\rangle=|H\rangle$ and $|1\rangle=|V\rangle$. Birefringent materials implement single-photon operations.
(iii) Time-bin: Photon with fixed frequency, polarization, spatial path etc., but may occupy two distinct time-binned intervals $k=e, l$ (e for early, l for late). Fast optical switches and delays implement single-photon operations.

Swapping encodings: Polarization to spatial

- Swapping between encodings is possible
- E.g., given two polarization modes H, V and two spatial modes 1,2 , implement a polarizing beamsplitter (PBS) s.t.

$$
\begin{aligned}
& \hat{a}_{H, 1} \rightarrow \hat{a}_{H, 1} \quad \text { and } \quad \hat{a}_{H, 2} \rightarrow \hat{a}_{H, 2}, \\
& \hat{a}_{V, 1} \rightarrow \hat{a}_{V, 2} \quad \text { and } \quad \hat{a}_{V, 2} \rightarrow \hat{a}_{V, 1} .
\end{aligned}
$$

- H gets transmitted while V gets reflected. Follow up by a polarization rotation results in swap from polarization qubit to spatial qubit

SINGLE PHOTON EVOLUTION

Single-photon evolution through thermal loss channel

- Most communication links (i.e., quantum channels) are over noisy fibers or free-space links, which can be accurately described by thermal loss channels
- Focus on the action of a thermal loss channel $\mathcal{L}_{\eta, N_{B}}$ on a single-photon state ρ_{1}
- Physically, background quanta N_{B} can be the population of the environment-originating from, e.g., the sun, the moon, or background lights for free-space links-whereas the loss probability $1-\eta$ of the channel is equal to the absorption probability of the medium.
- E.g., given a fiber of length $L, \eta=\mathrm{e}^{-\alpha L}$ where α is an attenuation coefficient (typically quoted in $\mathrm{dB} / \mathrm{km}$). The exponential attenuation is a consequence of the Beer-Lambert law for absorptive media.

Thermal loss: Channel decomposition

- Consider a thermal-loss channel $\mathcal{L}_{\eta, N_{B}}$ which has the following decomposition $\mathcal{L}_{\eta, N_{B}}=\mathcal{A}_{G, 0} \circ \mathcal{L}_{\tau, 0}$ with

$$
\tau G=\eta \quad \text { and } \quad \frac{G-1}{1-G \tau}=N_{B}
$$

- Parameters τ and G are related to η and N_{B} via

$$
G=(1-\eta) N_{B}+1 \quad \text { and } \quad \tau=\frac{\eta}{(1-\eta) N_{B}+1} .
$$

- To show decomposition:

Thermal loss: Operator-sum representation

- Consider Kraus operators $\left\{\hat{A}_{\ell}\right\}_{\ell=0}^{\infty}$ of pure-loss channel $\mathcal{L}_{\tau, 0}$

$$
\hat{A}_{\ell}=\sqrt{\frac{(1-\tau)^{\ell}}{\ell!}} \tau^{\hat{a}^{\dagger} \hat{a} / 2} \hat{a}^{\ell}
$$

- Consider Kraus operators $\left\{\hat{B}_{k}\right\}_{k=0}^{\infty}$ of quantum-limited amplifier $\mathcal{A}_{G, 0}$,

$$
\hat{B}_{k}=\sqrt{\frac{1}{k!} \frac{1}{G}\left(\frac{G-1}{G}\right)^{k}} \hat{a}^{\dagger k} G^{-\hat{a}^{\dagger} \hat{a} / 2}
$$

- Using $\mathcal{L}_{\eta, N_{B}}=\mathcal{A}_{G, 0} \circ \mathcal{L}_{\tau, 0}$, thermal loss channel then has

$$
\mathcal{L}_{\eta, N_{B}}(\rho)=\sum_{\ell=0}^{\infty} \sum_{k=0}^{\infty} \hat{B}_{k} \hat{A}_{\ell} \rho \hat{A}_{\ell}^{\dagger} \hat{B}_{k}^{\dagger} .
$$

Thermal loss: single-photon input $\mathcal{L}_{\eta, N_{B}}\left(\rho_{1}\right)=\sum_{\ell=0}^{\infty} \sum_{k=0}^{\infty} \hat{B}_{k} \hat{A}_{\ell} \rho_{1} \hat{A}_{\ell}^{\dagger} \hat{B}_{k}^{\dagger}$

- Consider single-photon input ρ_{1} with output $\mathcal{L}_{\eta, N_{B}}\left(\rho_{1}\right)$.
- Terms $\hat{A}_{\ell} \rho_{1} \hat{A}_{\ell}^{\dagger}$ are only non-zero when $\ell=0,1$. Thus,

$$
\hat{A}_{0} \rho_{1} \hat{A}_{0}^{\dagger}=\tau \rho_{1} \quad \text { and } \quad \hat{A}_{1} \rho_{1} \hat{A}_{1}^{\dagger}=(1-\tau)|\mathrm{vac}\rangle\langle\mathrm{vac}| .
$$

- With probability τ, the photon is transmitted. With probability $1-\tau$, the photon is lost.

Poll 4: Pure loss and erasure cont.

When acting on a single-photon state ρ_{1}, the pure-loss channel \mathcal{L}_{τ} is equivalent to an erasure channel $\mathcal{L}_{\varepsilon}$ with erasure probability $\varepsilon=1-\tau$. What is the erasure state in this case? [Hint: Note that we are losing photons via loss.]
(A) Vacuum state
(B) Completely mixed single-photon state
(C) State with ≥ 2 photons

Answer 4: Pure loss and erasure cont.

When acting on a single-photon state ρ_{1}, the pure-loss channel \mathcal{L}_{η} is equivalent to an erasure channel $\mathcal{L}_{\varepsilon}$ with erasure probability $\varepsilon=1-\eta$. What is the erasure state in this case? [Hint: Note that we are losing photons via loss.]
(A) Vacuum state
(B) Completely mixed single-photon state
(C) State with ≥ 2 photons

Explicitly, $\mathcal{L}_{\tau}\left(\rho_{1}\right)=\tau \rho_{1}+(1-\tau)|\operatorname{vac}\rangle\langle\mathrm{vac}|$. With probability τ, the photon is transmitted, and with probability $1-\tau$, the photon is lost.

Thermal loss: single-photon input cont. $\mathcal{L}_{\eta, N_{B}}\left(\rho_{1}\right)=\sum_{\ell=0}^{\infty} \sum_{k=0}^{\infty} \hat{B}_{k} \hat{A}_{\ell} \rho_{1} \hat{A}_{\ell}^{\dagger} \hat{B}_{k}^{\dagger}$

- More complicated for amplifier $\mathcal{A}_{G, 0}$ due to adding photons
- Relevent operators are \hat{B}_{k} for $k=0,1$,

$$
\hat{B}_{0}=\sqrt{\frac{1}{G}} G^{-\hat{a}^{\dagger} \hat{a} / 2} \quad \text { and } \quad \hat{B}_{1}=\sqrt{\frac{1}{G}\left(\frac{G-1}{G}\right)} \hat{a}^{\dagger} G^{-\hat{a}^{\dagger} \hat{a} / 2} .
$$

- Appending to pure-loss channel leads to,
(1) $\hat{B}_{0} \hat{A}_{0} \rho_{1} \hat{A}_{0}^{\dagger} \hat{B}_{0}=\frac{\tau}{G^{2}} \rho_{1}$; photon is unaffected by the channel
(2) $\hat{B}_{1} \hat{A}_{0} \rho_{1} \hat{A}_{0}^{\dagger} \hat{B}_{1}=\frac{2(G-1)}{G^{3}} \tau \rho_{2}$; one noisy photon added to state.
(3) $\left.\hat{B}_{0} \hat{A}_{1} \rho_{1} \hat{A}_{1}^{\dagger} \hat{B}_{0}=\frac{(1-\tau)}{G} \right\rvert\,$ vac $\rangle\langle$ vac $|$; photon is just lost.
(4) $\hat{B}_{1} \hat{A}_{1} \rho_{1} \hat{A}_{1}^{\dagger} \hat{B}_{1}=\frac{G-1}{G^{2}}(1-\tau) \Theta_{1}$; photon is lost and replaced with a single noisy photon state Θ_{1}. $\left[\Theta_{1}=\hat{I} / 2\right.$ for completely mixed photonic qubit.]

Thermal loss: single-photon input cont. $\mathcal{L}_{n, N_{s}}\left(\rho_{1}\right)=\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \hat{B}_{k} \hat{A}_{\ell} \rho_{1} \hat{A}_{l}^{\hat{l}} \hat{B}_{k}^{n}$

- Overall

$$
\begin{aligned}
\mathcal{L}_{\eta, N_{B}}\left(\rho_{1}\right)=\frac{\tau}{G^{2}} \rho_{1} & +\frac{G-1}{G^{2}}(1-\tau) \Theta_{1}+\frac{(1-\tau)}{G}|\operatorname{vac}\rangle\langle\mathrm{vac}| \\
& +\frac{(G-1)^{2}+2 \tau(G-1)}{G^{2}} \rho_{\geq 2} \text { photons }
\end{aligned}
$$

where $\rho_{\geq 2}$ photons is a quantum state with more than two photons.

- Transmission event probabilities,

$$
\begin{aligned}
p_{\text {success }} & =\frac{\tau}{G^{2}}=\frac{\eta}{\left[(1-\eta) N_{B}+1\right]^{3}} \quad \text { (successful transmission) } \\
p_{\Theta_{1}} & =\frac{G-1}{G^{2}}(1-\tau)=\frac{(1-\eta)^{2} N_{B}\left(N_{B}+1\right)}{\left[(1-\eta) N_{B}+1\right]^{3}} \quad \text { (random photon) } \\
p_{\text {vac }} & =\frac{(1-\tau)}{G}=\frac{(1-\eta)\left(N_{B}+1\right)}{\left[(1-\eta) N_{B}+1\right]^{2}} \quad \text { (receive nothing) } \\
p_{\geq 2} & =1-p_{\text {success }}-p_{\text {depolarizing }}-p_{\text {vac }} \quad \text { (receive } \geq 2 \text { photons) }
\end{aligned}
$$

Exercise 4: Low thermal noise

Q: Assume $N_{B} \ll 1$. Expand $p_{\text {success }}, p_{\Theta_{1}}$, and $p_{\text {vac }}$ to first order in N_{B}. Show that $p_{\geq 2}=2 \eta(1-\eta) N_{B}+\mathcal{O}\left(N_{B}^{2}\right)$. Can you intuitively explain result?
A: Expanding previous expressions,

$$
\begin{aligned}
p_{\text {success }} & =\frac{\eta}{\left[(1-\eta) N_{B}+1\right]^{3}} \approx \eta\left(1-3 N_{B}(1-\eta)\right)+\mathcal{O}\left(N_{B}\right)^{2} \\
p_{\Theta_{1}} & =\frac{(1-\eta)^{2} N_{B}\left(N_{B}+1\right)}{\left[(1-\eta) N_{B}+1\right]^{3}} \approx(1-\eta)^{2} N_{B}+\mathcal{O}\left(N_{B}^{2}\right) \\
p_{\text {vac }} & =\frac{(1-\eta)\left(N_{B}+1\right)}{\left[(1-\eta) N_{B}+1\right]^{2}} \approx(1-\eta)\left(1-(1-2 \eta) N_{B}\right)+\mathcal{O}\left(N_{B}^{2}\right)
\end{aligned}
$$

Then, $p_{\geq 2}=1-p_{\text {success }}-p_{\Theta_{1}}-p_{\text {vac }} \approx 2 \eta(1-\eta) N_{B}+\mathcal{O}\left(N_{B}^{2}\right)$

RECAP AND EXIT SURVEY

Course recap

- Briefly discussed how photons are good for just about anything (sensing, computing, communication)
- Reviewed general description of evolution and quantum channels (Kraus operators, purification, unitary extension)
- Analyzed Gaussian bosonic channels (loss, amplifier, AGN) and their influence at single-photon level
- Surveyed single-photon encodings and single-qubit operations (e.g., passive operations on dual-rail qubit)

Course Evaluation Survey

We value your feedback on all aspects of this short course. Please go to the link provided in the Zoom Chat or in the email you will soon receive to give your opinions of what worked and what could be improved.

CQN Winter School on Quantum Networks

Funded by National Science Foundation Grant \#1941583

Uale

