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Many physical platforms and systems

(But we'll focus on photons...)
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Poll 0: Photonic quantum information processing

What are photons good for?
(A) Quantum sensing

(B)
(C) Quantum communication
(D) All of the above

Quantum computing
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Answer 0: Photonic quantum information processing

What are photons good for?
(A) Quantum sensing

(B) Quantum computing

(C) Quantum communication
(D) All of the above

Photons are very versatile. Several quantum computing approaches exists
that are based on linear optics, microwave cavity modes, etc. Quantum
sensing platforms have been demonstrated with microwave cavities,
quantum optical setups, etc. Finally, quantum information processing
across long distances will require quantum optical interlinks.
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QUANTUM CHANNELS:
GENERAL DESCRIPTION
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Examples: Erasure and Depolarizing

L.: Consider a two-level quantum system (a qubit) described by the
quantum state U € ., and consider the “erasure state” |¢) which
lies outside of J7 (i.e., (¢|¥|e) =0V ¥ € ). An erasure channel
L. acts on the qubit as,

Lo(T) = (1— )T +e|e)e].

where 0 < € < 1 is the erasure probability.

A,: Given a qubit ¥, a depolarizing channel A, acts as follows,
Ap(0) = (1—p)¥ +pl/2,

where f/2 is the maximally mixed state and 0 < p < 4/3.
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Poll 1: Concatenated erasures

Consider two erasure channels £., and L., where, e.g.,

Le(V) = (1 —¢€)¥ +¢|e)e| for some state U. The concatenation of the
two erasure channels is another erasure channel, £.,, = L., o L.,. What
is the erasure probability €127 [Hint: The erasure probability is 1 minus
the transmission probability.]

(A) (e1+¢e2)/2

(B) £1€2

(C) 1-— (1 - 51)<1 — 82)
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Answer 1: Concatenated erasures

Consider two erasure channels £., and L., where, e.g.,

L(¥) = (1—¢)¥ + ele)e| for some state U. The concatenation of the
two erasure channels is another erasure channel, L., = L., o L.,. What
is the erasure probability €127 [Hint: The erasure probability is 1 minus
the transmission probability.]

(A) (e1+e2)/2

(B) £1€9

(C) 1-(1—e)(d—e2)

State either gets transmitted or erased. Transmission probability for first
channel is (1 —€1). Transmission probability for second channel is

(1 — e9). Total transmission probability is the product of probabilities
(1 —e1)(1 — e2). Erasure probability is thus 1 — (1 —e1)(1 — €2).
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GAUSSIAN BOSONIC CHANNELS
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Recall: Quantum harmonic oscillator

@ Free EM field is bosonic field described by harmonic oscillator-like
Hamiltonian Hyse = %"J (¢* + p*) with frequency w

@ Canonical position ¢ and momentum p
(quadratures) obey CCR [g,p] = il
@ Annihilation operator a related via

o= J5(G+ip) st [a,al] =1

o Equivalently, fIOSC = hwn + hw/2 with number operator n = ata and
eigenstate (Fock state) |n) where n € Z7.

at)”
o Explicitly, |n) = )" jvac). Then, a|n) = v |n — 1) and

a' n) = v/n+1|n+1). Note a|vac) = 0.
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Poll 2: Pure loss and erasure

A pure-loss channel £, has an operator sum representation

Ly(p) = Al (1)
(=0
with Kraus operators
N 1—mn)f ata/2 ~
Ay = (077)77 ra (2)

How many Kraus operators do we need to describe the output £,(p1) for
a single-photon input state p;? [Hint: focus on the a‘ term and recall that
a annihilates the vacuum.]

(A)1 (B) 2 (€)3
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Answer 2: Pure loss and erasure

A pure-loss channel £, has an operator sum representation

Ly(p) = AwpAl, (3)
=0
with Kraus operators
R 1—n) ta/0.
Ay = ( 6'77) na*a/2a£. (4)

How many Kraus operators do we need to describe the output £,(p1) for
a single-photon input state p;? [Hint: Focus on the a’ term and recall
that a annihilates the vacuum.]

(A)1 (B) 2 (©)3

For single-photon state p; and £ > 2, a‘pia’t = 0 because

ap1a’ o [vac)(vac| and a |vac)(vac|a! = 0. Thus only first two Kraus
operators (¢ = 0, 1) are necessary (and given by Ay = ,/nl and

Al =+1- n&)
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Exercise 1: Amplifier-then-loss is less noisy

Q: From before, we have that Ny, = Ag,n, o Ly, for G =1, where
Np, = (G = 1)(N1 + N + 1). Show that Ny, = Ly N, 0 Ag,n, for
Gn =1 and give Np, explicitly. Prove that Np, < Np,. Hence,
amp-loss is less noisy than loss-amp.

A: Use similar tricks and prove at level of annihilation operators.

A
a GN2 d =vVGa+ VG 16
ﬁ

UNI A// \/>a _|_ /1_7761

Then a” = /nGa + /1 —nG ( Vi(GDes v 7761). Equivalent to

V1-nG
AGN Np, in limit nG — 1 with Np, = (1 —n)(N2 + Ny + 1). Since
1-5=(G-1)/G and (G —1)/G < G — 1, then Np, < Np,.
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SINGLE PHOTON ENCODINGS
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Dual-rail qubit

@ Photons have many degrees of freedom (polarization, spatial, angular
momentum etc.).

o Each dof can described by set of mode operators {ay}., where M is
the number of orthogonal modes

@ Generally focus on two modes k € {1,2} to define a photonic qubit.
Logical states 0 and 1 are single-photon states

0) = al [vac) and [1) = al |vac)

s.t. general dual-rail qubit ¥ € span{|0),|1)}

@ Technically, [vac) = |vac); ® |vac),, dI |vac) = d]; o1 [vac); ® |vac)y
etc.
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Single qubit operations

@ Single-qubit operations implemented with passive operations.

@ Passive operations commute with total photon number

~

2 AT A
N =>4 aZak
o Consist of unitary beam splitters and phase-shifters, Ugs and 0¢>:
with Hamiltonians

ﬁBS = ieeiwdidz + h.C.,

2
Hy =" ¢pa)ar.

k=1
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Exercise 2: Passive operations

Q: Show that any Hamiltonian of the form H = ZZ] Hl-j&;-rdj commutes
with the total photon number operator N = 212.3:1 d;dk.

A: Equivalent to showing >, [dldk,&jdj} =0. Use
[AB,C] = A[B,C] +[A,C] B and [a],aj] = 6.

Networl
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Beamsplitter transformation

RTIVA.L) / e
10) = c=ab,« %\gp: cosDlo> + € s Iy

vec)y /

@ Action of general beamsplitter on mode operators,

al\ cos e¥sind\ (ay
ay)  \—e"¥sinf  cosf as

=VBs

where V};SVBS =1T and det Vg = 1.
o Easy to show that

10) 225 cos(0) + e sind 1),
11) B8 ™ 5in@0) + cosf[1) .
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Poll 3: Pauli-X with a beam splitter

Consider two input modes a1 and a9 into a general beam splitter
transformation with outputs @} and @), given as,

ar\ cos 6 e sinf\ (ay

ay) \—e "¥sinf  cosf as)’
Up to a global phase, can we implement the Pauli-X matrix X = ({{)
with this transformation?

(A) Yes
(B) No

46 / 63



Answer 3: Pauli-X with a beam splitter

Consider two input modes a; and ag into a general beam splitter
transformation with outputs @} and a/, given as,

al\ cos e sinf\ (a;

ay) \—e "¥sinf  cosf as )’
Up to a global phase, can we implement the Pauli matrix X = ((1) (1)) with
this transformation?

(A) Yes
(B) No

Choose, e.g., § = p = 7/2. Substitute into rotation matrix above to find
(2 "':)/2> o X. This is because cos(m/2) = 0, sin(7/2) = 1, and

_eTim/2 — eiﬂ'/Q
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Exercise 3: Hadamard

Q: Transformation matrices for phase shifts and beamsplitter,

el 0 cos e sin
Vo = < 0 ei‘b?) and  Vgs = (—ei‘f’ sinf cos@ ) '

What combination of phase-shifters and beamsplitters produces the
Hadamard matrix, H = \/i(% )7

A: Choose ¢1 =0, ¢o =m s.t. V= (§ %), and choose # = 7 /4 and

o =7/2st Vs = %(_1 1). Then H =V, Vgs.

48 / 63



Spatial, polarization, and time-bin encodings

@ When choosing photonic dof for encoding, questions to consider:
o Is the dof easy to manipulate?
o Is the dof robust to relevant noise sources?
o If necessary, can we scale-up for quantum information processing with
many photons?
@ Answers to these questions depend on context.
@ Common encodings:

(i) Spatial: Photon with fixed frequency w, polarization etc., but may
traverse two distinct paths k = 1, 2. Interaction by overlapping paths
at, e.g., beamsplitters. Phase shifts via path lengths s.t. ¢ = wLy/c.

(ii) Polarization: Photon with fiexed frequency, spatial path etc., but may
be in a superposition of polarization states. Horizontal H and vertical
V polarization define logical states, |0) = |H) and |1) = |V).
Birefringent materials implement single-photon operations.

(iii) Time-bin: Photon with fixed frequency, polarization, spatial path etc.,
but may occupy two distinct time-binned intervals k& = e, (e for early,
[ for late). Fast optical switches and delays implement single-photon
operations.
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Swapping encodings: Polarization to spatial

@ Swapping between encodings is possible
o E.g., given two polarization modes H,V and two spatial modes 1, 2,
implement a polarizing beamsplitter (PBS) s.t.

CALHJ — CALHJ and dH,Q — CALH’Q,
CALVJ — dV’Q and CALV,Q — CALVJ.
@ H gets transmitted while V' gets reflected. Follow up by a polarization

rotation results in swap from polarization qubit to spatial qubit

A,
Qv,q

An,) Oy,

av
> )1
7

~

QK—’ 1
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SINGLE PHOTON EVOLUTION
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Single-photon evolution through thermal loss channel

@ Most communication links (i.e., quantum channels) are over noisy
fibers or free-space links, which can be accurately described by
thermal loss channels

@ Focus on the action of a thermal loss channel £, n, on a
single-photon state p;

@ Physically, background quanta Np can be the population of the
environment—originating from, e.g., the sun, the moon, or
background lights for free-space links—whereas the loss probability
1 — n of the channel is equal to the absorption probability of the
medium.

e E.g., given a fiber of length L, n =¢ where « is an attenuation
coefficient (typically quoted in dB/km). The exponential attenuation
is a consequence of the Beer-Lambert law for absorptive media.

~

O e
= '
\\-hl_ >< 1' P
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7\

z=r &,Ne
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Thermal loss: Channel decomposition

@ Consider a thermal-loss channel £, n, which has the following
decomposition £, N, = Ag,0 o L+ with

G-1
G: d == N .
’ moan 1-Gr B
o Parameters 7 and G are related to n and Np via
n
G=(1-n)Np+1 and 7= .
(1=n)Np (1—7)Np + 1

@ To show decomposition:

53 / 63



Thermal loss: Operator-sum representation

o Consider Kraus operators {A,}7°, of pure-loss channel L,

A 1=1) oo
Ay = ( i )TaTa/2a€‘

o Consider Kraus operators {Bk}zozo of quantum-limited amplifier Ag o,

. 11 /G-1\* it
— I R ~tko~y—ava/2
5, %ﬂlg( 1) agraon

@ Using £, Ny = Ag, 0 Lrp, thermal loss channel then has

© o o
777NB ZZB]{AM)A;B;

=0 k=0
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Thermal loss: single-photon input

Ly,Ng(p1) Z( 0 Z; OBAAzPlA B

o Consider single-photon input p; with output £, n,(p1).

o Terms flgplflz are only non-zero when ¢ = 0,1. Thus,
AoplAO =T7p; and /llpl/q = (1 — 1) |vac)vac|.

@ With probability 7, the photon is transmitted. With probability 1 — 7,
the photon is lost.

Gomom
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Poll 4: Pure loss and erasure cont.

When acting on a single-photon state p;, the pure-loss channel L; is
equivalent to an erasure channel £. with erasure probability e =1 — 7.

What is the erasure state in this case? [Hint: Note that we are losing
photons via loss.]

(A) Vacuum state

(B) Completely mixed single-photon state
(C) State with > 2 photons
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Answer 4: Pure loss and erasure cont.

When acting on a single-photon state p1, the pure-loss channel £, is
equivalent to an erasure channel £, with erasure probability e =1 — .

What is the erasure state in this case? [Hint: Note that we are losing
photons via loss.]

(A) Vacuum state

(B) Completely mixed single-photon state
(C) State with > 2 photons

Explicitly, £(p1) = 7p1 + (1 — 7) [vac)(vac|. With probability 7, the
photon is transmitted, and with probability 1 — 7, the photon is lost.
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Thermal loss: single-photon input cont.

Lo N (1) =202 ke BA~Lp1~1IB;I

@ More complicated for amplifier Ag o due to adding photons

@ Relevent operators are By, for k = 0,1,

A _ |1 —atage A |1 G-1\ 4 —ata/2
Bg— GG and Bl— G( I a'G .

@ Appending to pure-loss channel leads to,
(1) f?oflopl/lgf?o Zzp1; photon is unaffected by the channel
(2) Blﬁoplflgél = mTpg, one noisy photon added to state.
(3) BoAlplA{BO = (1GT) [vac)(vac|; photon is just lost.
(4) Blfllplff{él = GG_21(1 — 7)0©71; photon is lost and replaced with a
single noisy photon state ©;. [©; = I/2 for completely mixed photonic
qubit.]
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Thermal loss: single-photon input cont.

Lyns(p1) = 2020 S e Br ’11P1”1 B

e Overall
G-1 1—71
Lyng(p1) = G2P1 + 7 (1-7)01+ ( e ) |vac)(vac|
(G-1)2+27(G-1)
T G2 P>2 photons’

where p_ 5 photons is a quantum state with more than two photons.
@ Transmission event probabilities,

j2 = = L (S ccessful trans 'ss'on)
— u u missi
success G2 [(1 H)N 1]3
G-1 (1—77)2NB(NB+1)

Per = ~r3 (1-7)= (random photon)

(1= )N + 1P
(-7 (1-n)(Np+1)
Proe =G T 0= )N + 12

P>2 = 1- Psuccess — Pdepolarizing — Pvac (receive >2 phOtOhS)

(receive nothing)
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Exercise 4: Low thermal noise

~—

28 t
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Q: Assume Np < 1. Expand psuccess, Po,, and pyac to first order in Np.
Show that p>2 = 2n(1 — n)Np + O(N%). Can you intuitively explain
result?

A: Expanding previous expressions,

Psuccess = [(1 _ 7])7\],3 n 1]3 ~ (1 - 3NB(1 - 77)) + O(NB)2

(1-n)*Np(Np +1)

(1= )Np+ 17

_A=nWNp+1) _
DPvac = [(1 _n)NBB+ 1]2 ~ (1 _77) (1 - (1 _277)NB) +O(N%)

Pe, = ~ (1 —n)*Ng + O(N3)

Then, DP>2 = 1-— Psuccess — PO; — Pvac ~ 277(1 - 77)NB + O(N%)
@

Centerfor
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RECAP AND EXIT SURVEY
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Course recap

@ Briefly discussed how photons are good for just about anything
(sensing, computing, communication)

@ Reviewed general description of evolution and quantum channels
(Kraus operators, purification, unitary extension)

@ Analyzed Gaussian bosonic channels (loss, amplifier, AGN) and their
influence at single-photon level

@ Surveyed single-photon encodings and single-qubit operations (e.g.,
passive operations on dual-rail qubit)

LIGO

Quantum computer
i s,

Quantum sensing
Using non-classical source to enhance
‘hypothesis testing

estimation 4

Quantum communication **

Quantum key distribution

Quantum teleportation

Quantum network

Entanglement-assisted cation Quantum computing
. Quantum adiabatic algorithms

Quanturm circuit model

Measurement-based quantum computing

tation

Quantum machine learning
Quantum
satellite
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Course Evaluation Survey

We value your feedback on all aspects of this
short course. Please go to the link provided
in the Zoom Chat or in the email you will
soon receive to give your opinions of what
worked and what could be improved.
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