## Classical and Quantum Error Correction

## Instructor: Narayanan Rengaswamy <br> - University of Arizona

Instructor: Bane Vasić

- University of Arizona


## CQN Winter School on Quantum Networks

## Funded by National Science Foundation Grant \#1941583

Yale


Center for
Quantum
Networks NSF-ERC

## Prelude

## Digital communications and storage



## Inside the box: Channel + Detector errors



## Noisy memoryless channels



Memoryless
Channel

$$
p\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)
$$

## Simple memoryless channels

- Binary erasure channel (BEC)
- Binary symmetric channel (BSC)
- Binary input additive white Gaussian noise (AWGN) channel, $\sigma^{2}$



## Channel capacity - Binary Erasure Channel



We lose a fraction $\varepsilon$ of the bits. How do we recover that data?

## Poll Question 1

Let $\boldsymbol{x}=\left[x_{1}, \ldots, x_{n}\right]$ be a codeword transmitted over a memoryless channel and let $\boldsymbol{y}=\left[y_{1}, \ldots, y_{n}\right]$ be the corresponding channel output. Then the conditional probability density $\boldsymbol{p}(\boldsymbol{y} \mid \boldsymbol{x})$ can be written as
A. $p(y \mid x)=\sum_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)$
B. $p(\boldsymbol{y} \mid \boldsymbol{x})=p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) p\left(y_{3} \mid x_{3}\right) \cdots p\left(y_{n-1} \mid x_{n-1}\right) p\left(y_{n} \mid x_{n}\right)$
C. $p(\boldsymbol{y} \mid \boldsymbol{x})=p\left(y_{1} \mid x_{2}\right)+p\left(y_{2} \mid x_{3}\right)+p\left(y_{3} \mid x_{4}\right)+\cdots+p\left(y_{n-1} \mid x_{n}\right)$
D. $p(\boldsymbol{y} \mid \boldsymbol{x})=p\left(y_{1} \mid x_{2}\right) \cup p\left(y_{2} \mid x_{3}\right) \cup p\left(y_{3} \mid x_{4}\right) \cup \cdots \cup p\left(y_{n-1} \mid x_{n}\right)$
E. $p(y \mid x)=p\left(\left\{y_{1}+y_{2}+, \ldots+y_{n}\right\} \cup\left\{x_{1}+x_{2}+\cdots+x_{n}\right\}\right)$
F. None of the above

## Channel coding


$C=1-\varepsilon$ : But the $n$-bit repetition code sends just 1 bit / $n$ channel uses!

## Error Correction Coding (ECC)



- Message: $\boldsymbol{m}=\left[m_{1}, m_{2}, \ldots, m_{k}\right]$
- Codeword: $\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
- Code rate: $R=\frac{k}{n} \leq C$ (Capacity) $\leq 1$
- Received word: $\boldsymbol{y}=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$
- The decoder tries to find $\widehat{x}$ ( or $\widehat{m}$ ) from $y$ so that the probability of bit/codeword error is minimal.
- In other words, decoder tries to find a codeword that is "closest" to $\boldsymbol{y}$.


## $[n, k]$ binary linear codes

Generator matrix $(k \times n): G=\left[\begin{array}{c}g_{1} \\ g_{2} \\ \vdots \\ g_{k}\end{array}\right] \in\{0,1\}^{k \times n}$ (rank $k$ binary matrix)
Encoding: $\boldsymbol{x}=\boldsymbol{m} G=m_{1} \boldsymbol{g}_{\mathbf{1}}+m_{2} \boldsymbol{g}_{\mathbf{2}}+\cdots+m_{k} \boldsymbol{g}_{k} \in\{0,1\}^{n}(\mathrm{XOR})$
n-bit Repetition Code: $G=[\boldsymbol{g}]=\left[\begin{array}{lllll}1 & 1 & 1 & \cdots & 1\end{array}\right]$

$$
\boldsymbol{m}=[m] \xrightarrow{\text { Encode }} \boldsymbol{x}=\boldsymbol{m} G=\left[\begin{array}{lllll}
m & m & m & \cdots & m
\end{array}\right]
$$

[ $n=5, k=2$ ] Code: (contains $2^{k}=4$ codewords to encode $2^{k}=4$ messages)

$$
G=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \quad \begin{aligned}
& \boldsymbol{m}=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \xrightarrow{\text { Encode }} \\
& \boldsymbol{m}=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \xrightarrow[\text { Encode }]{\text { Encode }} \\
& \boldsymbol{x}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \boldsymbol{m}=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
\text { Encol } & 1 & 1 & 0
\end{array}\right] \\
& \boldsymbol{m}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \xrightarrow{\text { Encode }} \boldsymbol{x}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1
\end{array}\right] \\
& x=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

## Parity-check matrix

[ $n=5, k=2$ ] Code: (contains $2^{k}=4$ codewords to encode $2^{k}=4$ messages)

Encoding: $\boldsymbol{x}=\left[\begin{array}{ll}m_{1} & m_{2}\end{array}\right] G=\left[\begin{array}{lllll}m_{1} & m_{2} & m_{1}+m_{2} & m_{2} & m_{1}\end{array}\right]$

$$
=\left[\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5}
\end{array}\right]
$$

Parity-checks: $s_{1}=x_{1}+x_{2}+x_{3}=m_{1}+m_{2}+\left(m_{1}+m_{2}\right)=0$

$$
\begin{aligned}
& s_{2}=x_{2}+x_{4}=m_{2}+m_{2}=0 \\
& s_{3}=x_{1}+x_{5}=m_{1}+m_{1}=0
\end{aligned}
$$

$\left(H G^{T}\right) m^{T}=0 \Rightarrow H G^{T}=0$
Syndrome
Parity-check
$\underset{(n-k) \times n:}{\text { matrix }} \quad H=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{c}\boldsymbol{h}_{2} \\ \vdots \\ \boldsymbol{h}_{n-k}\end{array}\right] ; \boldsymbol{s}=\left[\begin{array}{l}s_{2} \\ \text { 01/05/2023 }\end{array}\right.$
THE UNVERSTY OF ARIZNA.

## Poll Question 2

For an $[n, k]$ linear block code, what are the dimensions of the generator and paritycheck matrices?
A. $G: k n \times n$ and $H:(n-k) n \times n$
B. $G: k \times n$ and $H:(n-k) \times n$
C. $G: k \times k$ and $H:(n-k) \times(n-k)$
D. $G: n \times k$ and $H: n \times(n-k)$

## Correcting errors

Codebook $\left.\begin{array}{l}\boldsymbol{x}=\left[\begin{array}{lllll}\boldsymbol{x} & 0 & 0 & 0 & 0\end{array}\right] \\ \boldsymbol{x}=\left[\begin{array}{llll}0 & 1 & 1 & 1\end{array}\right) \\ \boldsymbol{x}=\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}\right]\end{array}\right] \quad H=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1\end{array}\right] ; \boldsymbol{s}=H \boldsymbol{x}^{\boldsymbol{T}}=\mathbf{0}$


Channel $=$ BEC: $\boldsymbol{y}=\left[\begin{array}{lllll}1 & E & 0 & 1 & 1\end{array}\right] \xrightarrow[\text { Decode }]{\text { Decode }} \widehat{\boldsymbol{x}}=\left[\begin{array}{lllll}1 & 1 & 0 & 1 & 1\end{array}\right]$

$$
\boldsymbol{y}=\left[\begin{array}{lllll}
1 & E & E & 1 & 1
\end{array}\right] \xrightarrow{\text { Decode }} \widehat{\boldsymbol{x}}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Channel $=\mathrm{BSC}: \boldsymbol{e}=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right] ; \boldsymbol{s}=H \boldsymbol{y}^{T}=H(\boldsymbol{x}+\boldsymbol{e})^{T}=H \boldsymbol{e}^{T}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{T}$

$$
\boldsymbol{y}=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1
\end{array}\right] \xrightarrow{\text { Decode }} \widehat{\boldsymbol{x}}=\boldsymbol{y}+\boldsymbol{e}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Center for
Quantum
Networks
NSF-ERC

## Protecting information by coding

all words of length $n$


Center for
Quantum
Networks
NSF-ERC

## Protecting information by coding

all words of length $n$


## Maximum likelihood decoding



## Poll Question 3

Consider the code with the following parity-check matrix

$$
H=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and assume that the channel output is $\boldsymbol{y}=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array} 00\right.$. The syndrome is then:
A. $\boldsymbol{s}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
B. $s=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$
C. $s=3$
D. $s=6$
E. $s=2^{3}$
F. None of the above
G. I'm not sure

## Poll Question 4

Consider the code with the following parity-check matrix

$$
H=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and assume that the channel output is $\boldsymbol{y}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ E\end{array}\right]$, where $E$ is the erasure symbol. The erasure decoder will produce the following vector as the output:
A. $x=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right]$
B. $x=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$
C. $\boldsymbol{e}=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]$
D. $\boldsymbol{m}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$
E. $m=\left[\begin{array}{ll}0 & 1\end{array}\right]$
F. None of the above
G. I'm not sure

## Minimum distance



Hamming distance $=$ the number of positions in which two binary vectors differ Minimum distance = the Hamming distance between two closest codewords

## $[n=5, k=2, d=3]$ linear block code

$$
\begin{aligned}
& x_{1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& x_{2}=\left[\begin{array}{llll}
0 & 1 & 1 & 1
\end{array} 0\right] \\
& x_{3}=\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 1
\end{array}\right] \quad H=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right] ; \boldsymbol{s}=H \boldsymbol{x}^{T}=\mathbf{0} \\
& x_{1}=\left[\begin{array}{llll}
1 & 1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Hamming distance $=$ the number of positions in which two binary vectors differ
Minimum distance $d=$ the Hamming distance between two closest codewords $=$ the Hamming distance between $x_{1}$ and $x_{2}$ $=$ the Hamming distance between $x_{1}$ and $x_{3}$ $=$ the Hamming distance between $x_{2}$ and $x_{4}$ $=$ the Hamming distance between $x_{3}$ and $x_{4}$ $=3$

The code encodes $k=2$ message bits into $n=5$ code bits with distance $d=3$
Hamming spheres of radius $t=\frac{d-1}{2}=1$ around codewords don't intersect
$\longrightarrow$ Code corrects $t=1$ error or $d-1=2$ erasures; detects $d-1=2$ errors

## Minimum distance

$$
\binom{n}{t}=5 \text { vectors at Hamming distance } t=1 \text { from any codeword }
$$



Hamming distance $=$ the number of positions in which two binary vectors differ Minimum distance $=$ the Hamming distance between two closest codewords

## Dual code $C^{\perp}$

Generator and Parity-check

$$
G=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right] \quad H=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right] ; s=H \boldsymbol{x}^{T}=\mathbf{0}
$$

Duality (Orthogonality): $G H^{T}=0$

Code C

$$
\begin{aligned}
& x_{1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& x_{2}=[1 \\
& x_{3}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 1
\end{array}\right] \\
& x_{4}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Code $C:[n=5, k=2, d=3]$
Code $C^{\perp}:\left[n=5, k^{\perp}=n-k=3, d^{\perp}=2\right]$

Dual Code Row space of $H: x_{i} v_{j}^{T}=0$

Code $C^{\perp}$

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
v_{2}=[1 & 1 & 1 & 0 & 0
\end{array}\right] \\
& v_{3}=\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 0
\end{array}\right] \\
& v_{4}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& v_{5}=[1 \\
& v_{6}=\left[\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right] \\
& v_{7}=\left[\begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array}\right] \\
& v_{8}=\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

## Protecting information by coding



Center for Quantum Networks NSF-ERC

## Linear block codes



Center for

## Dimension of a linear block code



Center for Quantum Networks NSF-ERC

## Parity check



Center for Quantum Networks NSF-ERC

## Parity check



Center for Quantum Networks NSF-ERC

## Parity check



Center for Quantum Networks NSF-ERC

## Syndrome



## Poll Question 5

A linear block code with minimum distance $d$ can correct any
A. weight - $(d-1)$ errors
B. weight $-\left(\frac{d-1}{2}\right)$ errors
C. weight $-\left(\frac{d}{2}\right)$ errors
D. weight $-\left(\frac{d}{2}+1\right)$ errors
E. I'm not sure

## [7,4,3] Hamming code

$$
\begin{aligned}
& G=\left[\begin{array}{lll|llll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& x=\left[\begin{array}{llll}
m_{1} & m_{2} & m_{3} & m_{4}
\end{array}\right] G \\
& H=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right] \\
& \text { Codewords } \\
& 0000000 \\
& 1101000 \\
& 0110100 \\
& 1011100 \\
& 1110010 \\
& 0011010 \\
& 1000110 \\
& 0101110 \\
& 1010001 \\
& 0111001 \\
& 1100101 \\
& 0001101 \\
& 0100011 \\
& 1001011
\end{aligned}
$$

## Example - correcting single errors

- Rewrite $H$ using column vectors $H=\left[\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots, \mathrm{~h}_{j}, \ldots \mathrm{~h}_{n}\right]$
- Error vector $e=\left[e_{1}, e_{2}, \ldots, e_{j}, \ldots, e_{n}\right]$
- Syndrome $s^{\mathrm{T}}=H e^{\mathrm{T}}=\left[e_{1} \mathrm{~h}_{1}, e_{2} \mathrm{~h}_{2}, \ldots, e_{j} \mathbf{h}_{j}, \ldots, e_{n} \mathrm{~h}_{n}\right]$
- Suppose $e$ contains only one binary 1 at the $j$-th position, i.e., $e=\left[0,0, \ldots, e_{j}=1, \ldots 0\right]$
- Then $s^{\mathrm{T}}=\mathrm{h}_{j}$
- In order to correct a single error in the codeword, the columns of $H$ must be all different and nonzero.
- The dimensions of $H$ are $(n-k) \times n$, thus the largest code length is $n=2^{n-k}-1$.
- Thus, in this case, $k=n-\log _{2}(n+1)$.


## [7,4,3] Hamming code

$$
\left.\begin{array}{rl}
H= & {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)} \\
G=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]
\end{array}\right] \begin{aligned}
& 1 \begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array} 0_{1} \\
& 1 \\
& 1
\end{aligned} 0
$$

Center for Quantum Networks NSF-ERC

## [7,4,3] Hamming code

$$
\binom{n}{t}=7 \text { vectors at Hamming distance } t=\frac{d-1}{2}=1 \text { from any codeword }
$$



Perfect Code: The $2^{k}=16$ Hamming spheres cover all the $2^{n}=128$ vectors!

## Poll Question 6

The channel introduces random bit flips but in any 10 consecutive bits, it introduces no more than a single bit flip. You choose to use a Hamming code to protect user information bits against bit flips in such channel. The largest number of information bits that can be protected by encoding them using the Hamming code is:
A. 0
B. 1
C. 2
D. 3
E. 4
F. 5
G. 9
H. I'm not sure

## Maximum likelihood (ML) decoding



- $d=d(\boldsymbol{x}, \boldsymbol{y})$ : the Hamming distance between $\boldsymbol{x}$ and $\boldsymbol{y}$
- For the BSC channel: $P(y \mid x)=\alpha^{d}(1-\alpha)^{n-d}$
- ML decoding rule:

$$
\hat{x}=\underset{x \in C}{\operatorname{argmax}} P(x \mid y)=\underset{x \in C}{\operatorname{argmax}} \frac{P(x) P(y \mid x)}{P(y)}
$$

- If all codewords are equally likely, then maximize $\log _{2} P(y \mid x)$


## ML decoder on BSC channel

- ML decoding rule:

$$
\hat{x}=\underset{x \in C}{\operatorname{argmax}} \log _{2} P(y \mid x)
$$

- For the BSC:

$$
\begin{aligned}
P(y \mid x) & =\alpha^{d}(1-\alpha)^{n-d} \\
\log _{2} P(y \mid x) & =d \log _{2} \alpha+(n-d) \log _{2}(1-\alpha) \\
& =d \log _{2} \frac{\alpha}{1-\alpha}+n \log _{2}(1-\alpha) \\
& \text { negative for } \alpha<1 / 2 \quad \text { independent of } d
\end{aligned}
$$

- Hence, $\widehat{\boldsymbol{x}}$ is the codeword closest to $\boldsymbol{y}$ :

$$
\hat{x}=\underset{x \in \mathcal{C}}{\operatorname{argmin}} d(x, y)
$$

Center for
Quantum
Networks
NSF-ERC

$$
\begin{gathered}
G=\left[\begin{array}{llllll}
1 & & & 1 & & 1 \\
& 1 & & 1 & 1 & \\
& & 1 & & 1 & 1
\end{array}\right] \quad H=\left[\begin{array}{llllll}
1 & 1 & & 1 & & \\
& 1 & 1 & & 1 & \\
1 & & 1 & & & 1
\end{array}\right] \\
\\
\\
\end{gathered}
$$

## Example $[6,3,3]$ code

## Standard array decoding

ML decoding: $\hat{x}=\underset{x \in \mathcal{C}}{\operatorname{argmin}} d(x, y) \quad H=\left[\begin{array}{llllll}1 & 1 & & 1 & & \\ & 1 & 1 & & 1 & \\ 1 & & 1 & & & 1\end{array}\right]$
$2^{k}$
$2^{n-k}\left\{\begin{array}{l|llllllllll}000 & 000 & 001011 & 010110 & 100101 & 011101 & 101110 & 110011 & 111000 & 000 \\ \hline 000001 & 001010 & 010111 & 100100 & 011100 & 101111 & 110010 & 111001 & 001 \\ 000010 & 001001 & 010100 & 100111 & 011111 & 101100 & 110001 & 111010 & 010 \\ 000100 & 001111 & 010010 & 100001 & 011001 & 101010 & 110111 & 111100 & 100 \\ 001000 & 000011 & 011110 & 101101 & 010101 & 100110 & 111011 & 110000 & 011 \\ 010000 & 011011 & 000110 & 110101 & 001101 & 111110 & 100011 & 101000 & 110 \\ 100000 & 101011 & 110110 & 000101 & 111101 & 001110 & 010011 & 011000 & 101\end{array}\right.$

## Standard array decoding

ML decoding: $\quad \hat{x}=\operatorname{argmin} d(x, y=110101)$

$$
x \in \mathcal{C}
$$

$$
2^{k}
$$

| $2^{n-k}$ | 000000 | 001011 | 010110 | 100101 | 011101 | 10111 | 110 | 11100 | 000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 000001 | 001010 | 010111 | 100100 | 011100 | 101111 | 110010 | 111001 | 001 |
|  | 000010 | 001001 | 010100 | 100111 | 011111 | 10110 | 11000 | 111010 | 010 |
|  | 000100 | 001111 | 010010 | 100001 | 011001 | 101010 | 110111 | 111100 | 100 |
|  | 001000 | 000011 | 011110 | 101101 | 010101 | 100110 | 11101 | 11000 |  |
|  | 010000 | 011011 | 000110 | 110101 | 001101 | 111110 | 100011 | 101000 | 110 |
|  | 100000 | 101011 | 110110 | 000101 | 111101 | 001110 | 010011 | 011000 | 101 |

## Complexity scales exponentially!!

## Poll Question 7

The standard array of a linear block code is given below.

| 00000 | 10110 | 01101 | 11011 |
| :--- | :--- | :--- | :--- |
| 10000 | 00110 | 11101 | 01011 |
| 01000 | 11110 | 00101 | 10011 |
| 00100 | 10010 | 01001 | 11111 |
| 00010 | 10100 | 01111 | 11001 |
| 00001 | 10111 | 01100 | 11010 |
| 00011 | 10101 | 01110 | 11000 |
| 10001 | 00111 | 11100 | 01010 |

The word received from the channel is $y=\left[\begin{array}{llll}0 & 1 & 1 & 0\end{array} 00\right.$, and the standard array decoder is used to estimate the transmitted codeword $\boldsymbol{x}$. The estimated codeword is:
A. The standard array decoder cannot correct this error pattern
B. $x=\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 1\end{array}\right]$
C. $x=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 1\end{array}\right]$
D. $x=\left[\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}\right]$
E. $\boldsymbol{x}=\left[\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}\right]$
F. $\boldsymbol{x}=\left[\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}\right]$
G. I'm not sure

Center for Quantum
Networks

# Codes on Graphs and 

 Iterative Decoding
## Graphical model for a linear block code



Factor graph (or)
Tanner graph

## Low-density parity-check (LDPC) codes

- Linear block codes defined by sparse bipartite graphs
- The Tanner graph of an LDPC code $C$ is a bipartite graph $G$ with two sets of nodes:
- the set of variable nodes $\quad V=\{1,2, \ldots, n\}$
- and the set of check nodes $C=\{1,2, \ldots, m\}$


## Definitions

- The check nodes (resp. variable nodes) connected to a variable node (resp. check node) are its "neighbors".
- The set of neighbors of a node $u$ is denoted by $\mathcal{N}(u)$
- The degree $d_{u}$ of a node $u$ is the size of $\mathcal{N}(u)$



## Definitions

- A vector $\mathbf{v}=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ is a codeword if and only if for each check node, the modulo two sum of its neighbors (i.e., respective bits of the vector) is zero
- An $(n, \gamma, \rho)$ regular LDPC code has a Tanner graph with $n$ variable nodes each of degree $\gamma$ and $m=n \gamma / \rho$ check nodes each of degree $\rho$
- This code has length $n$ and rate $r=\frac{k}{n} \geq 1-\frac{\gamma}{\rho}$
- The Tanner graph is not uniquely defined by the code
- Each parity-check matrix produces one Tanner graph


## A regular ( $n=25, \gamma=3, \rho=5$ ) LDPC code



## Poll Question 8

The parity check matrix that corresponds to the following Tanner graph is

A. $H=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1\end{array}\right]$
B. $H=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1\end{array}\right]$
C. $H=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1\end{array}\right]$
D. $H=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1\end{array}\right]$

## Poll Question 9

For the code given by the Tanner graph below, the following statement is false:

A. $n=25$ and $\rho=5$
B. The check degree is three
C. $n=25$ and the Tanner graph is bipartite
D. It is a regular LDPC code

Center for Quantum
Networks NSF-ERC

## Iterative decoders for BEC

## Iterative decoding on BEC



- erased bit correct bit


Center for Quantum

- erased bit correct bit



## BEC decoding simulation

- erased bit correct bit

- a check involving a single erased bit other check


## BEC simulation - 1


a check satisfied after correction

## BEC simulation - 2


a check satisfied after correction

## BEC simulation - 3


a check satisfied after correction

## BEC simulation - 4


a check satisfied after correction

## BEC simulation - 5


$\square$ a check satisfied after correction

## BEC simulation - 6



## Success !

## Another example BEC simulation - 1



## Another example BEC simulation - 2



## BEC simulation - final



## Stuck !

## Decoding failures

- A BEC iterative decoder fails to converge to a codeword (correct or wrong) if at any iteration there is no check node connected to at most one erased variable node.

- Graph induced by a subset of check nodes each connected to at least two erased variables is a stopping set.


## Gallager A/B algorithm

- The Gallager A/B algorithms are hard decision decoding algorithms in which all the messages are binary
- $\left|\varpi_{* \rightarrow i}=m\right|$ number of incoming messages to $i$ which are equal to $m \in\{0,1\}$. Associated with every decoding round $k$ and variable degree $d_{i}$ is a threshold $b_{k, d_{i}}$.
- The Gallager B algorithm is defined as follows:

$$
\begin{aligned}
\omega_{i \rightarrow \alpha}^{(0)} & =y_{i} \\
\varpi_{\alpha \rightarrow i}^{(k)} & =\left(\sum_{j \in \mathcal{N}(\alpha) \backslash i} \omega_{j \rightarrow \alpha}^{(k-1)}\right) \bmod 2 \\
\omega_{i \rightarrow \alpha}^{(k)} & = \begin{cases}1, & \text { if }\left|\varpi_{* \backslash \alpha \rightarrow i}^{(k)}=1\right| \geq b_{k, d_{i}} \\
0, & \text { if } \mid \varpi_{*}^{(k)}(\alpha \rightarrow i \\
y_{i}, & \text { otherwise }\end{cases}
\end{aligned}
$$

## Iterations of Gallager B



## Iterations of Gallager B


iteration 1 - initialization all variables send zero

## Iterations of Gallager B


iteration 1 - the second half

## Iterations of Gallager B



## Iterations of Gallager B


recall what messages were sent to variable nodes

## Iterations of Gallager B


> iteration 2 - first half
> variables send the majority of incoming messages

## Iterations of Gallager B


iteration 2 - second half

## Iterations of Gallager B



## Iterations of Gallager B


messages sent to variable nodes in previous iteration

## Iterations of Gallager B



$$
\begin{array}{lll}
\text { iteration } 3-\text { first half } \\
\text { as when we started } & \longrightarrow & 0 \\
1
\end{array}
$$

Center for Quantum Networks

## Error floor



## Poll Question 10

The Gallager-B decoder on the BSC channel with cross over probability $\alpha$ operates by sending messages between variable and check node processing units. After receiving all three messages from its neighboring checks, assuming that the channel value is 0 , the variable node processing unit of the variable shown in the picture below will send the following message to the check node processing unit of the remaining check:
A. ${ }^{\log \frac{1-\alpha}{\alpha}}$
B. $\log \frac{1-\alpha}{\alpha} 0$
C. 0
D. 1
E. I'm not sure


Center for Quantum
Networks NSF-ERC

## Decoding by belief propagation

## Crossword puzzles

- Iterate!


Across:

4 Animal with long ears and a short tail. 10 Person who is in charge of a country. 12 In no place.

Down:

5 Pointer, weapon fired from a bow.
6 Accept as true.
7 A place to shoot at; objective.

## Maximum likelihood (ML) decoding



- ML decoding rule:

$$
\hat{x}=\underset{x \in C}{\operatorname{argmax}} P(x \mid y)
$$

- Must evaluate posterior for each of the $2^{k}$ codewords!
- Make bit-wise decisions instead:

$$
\hat{x}_{j}=\underset{x_{j} \in\{0,1\}}{\operatorname{argmax}} P\left(x_{j} \mid y\right)=\underset{x_{j} \in\{0,1\}}{\operatorname{argmax}} \sum_{x_{1} \ldots \ldots x_{i-1}, x_{i+1} \ldots x_{n} \in\{0,1\}^{n-1}} P(x \mid y)
$$

## Bit-wise maximum likelihood (ML) decoding

$$
\hat{x}_{1}=\underset{x_{1} \in\{0,1\}}{\operatorname{argmax}} P\left(x_{1} \mid y\right)=\underset{x_{1} \in\{0,1\}}{\operatorname{argmax}} \sum_{x_{2}, x_{3}, x_{4}, x_{5} \in\{0,1\}^{4}} P(x \mid y)
$$



$$
\begin{aligned}
& =\underset{x_{1} \in\{0,1\}}{\operatorname{argmax}} \sum_{x_{2}, x_{3}, x_{4}, x_{5} \in\{0,1\}^{4}} P(y \mid x) P(x) \\
& =\underset{x_{1} \in\{0,1\}}{\operatorname{argmax}} \sum_{x_{2}, x_{3}, x_{4}, x_{5} \in\{0,1\}^{4}}\left(\prod_{j=1}^{5} W_{j}\right) \mathbb{I}\left(c_{1}=0\right) \mathbb{I}\left(c_{2}=0\right)
\end{aligned}
$$



Distributivity of addition over multiplication!

## Sum-product algorithm (SPA)

## Belief propagation (BP)



Variable node (VN) update:

$$
\mu_{x \rightarrow f}(x)=\prod_{h \in n(x) \backslash\{f\}} \mu_{h \rightarrow x}(x)
$$

Check node (CN) update:

$$
\mu_{f \rightarrow x}(x)=\sum_{\sim\{x\}}\left(f(X) \prod_{h \in n(f) \backslash\{x\}} \mu_{y \rightarrow f}(y)\right)
$$

Variable node (VN) decision:

$$
g_{i}\left(x_{i}\right)=\prod_{h \in n\left(x_{i}\right)} \mu_{h \rightarrow x_{i}}\left(x_{i}\right)
$$

## Decoders for channels with soft outputs

- In addition to the channel value, a measure of bit reliability is also provided

- Bit log-likelihood ratio (LLR) given $y_{i}$ :

$$
\begin{aligned}
\lambda\left(x_{i}\right) & =\log \frac{P\left(x_{i}=0 \mid y_{i}\right)}{P\left(x_{i}=1 \mid y_{i}\right)} \\
& =\log \frac{p\left(y_{i} \mid x_{i}=0\right) P\left(x_{i}=0\right)}{p\left(y_{i}\right)} \\
\frac{p\left(y_{i} \mid x_{i}=1\right) P\left(x_{i}=1\right)}{p\left(y_{i}\right)} & =\log \frac{p\left(y_{i} \mid x_{i}=0\right) P\left(x_{i}=0\right)}{p\left(y_{i} \mid x_{i}=1\right) P\left(x_{i}=1\right)} \\
& =\log \frac{p\left(y_{i} \mid x_{i}=0\right)}{p\left(y_{i} \mid x_{i}=1\right)}+\log \frac{P\left(x_{i}=0\right)}{P\left(x_{i}=1\right)}
\end{aligned}
$$

## Log-likelihood ratio (LLR)

- Without prior knowledge on $x_{i}$ :

$$
\gamma_{i}=\lambda\left(x_{i}\right)=\log \frac{p\left(y_{i} \mid x_{i}=0\right)}{p\left(y_{i} \mid x_{i}=1\right)}
$$

- For AWGN $\left(y_{i}=x_{i}+n_{i} ; \quad n_{i} \sim N(0,1)\right)$ :

$$
\gamma_{i}=\log \frac{p\left(y_{i} \mid x_{i}=0\right)}{p\left(y_{i} \mid x_{i}=1\right)}=\frac{1}{2 \sigma^{2}}\left(-\left(y_{i}-1\right)^{2}+\left(y_{i}+1\right)^{2}\right)=\frac{y_{i}}{2 \sigma^{2}}
$$

- For BSC with parameter $\alpha$ :

$$
\gamma_{i}= \begin{cases}\log \frac{1-\alpha}{\alpha} & \text { if } y_{i}=0 \\ \log \frac{1-\alpha}{\alpha} & \text { if } y_{i}=1\end{cases}
$$

## BP or SPA

- The update rule

$$
\begin{aligned}
\omega_{i \rightarrow \alpha}^{(0)} & =\gamma_{i} \\
\varpi_{\alpha \rightarrow i}^{(k)} & =2 \tanh ^{-1}\left(\prod_{j \in \mathcal{N}(\alpha) \backslash i} \tanh \left(\frac{1}{2} \omega_{j \rightarrow \alpha}^{(k-1)}\right)\right) \\
\omega_{i \rightarrow \alpha}^{(k)} & =\gamma_{i}+\sum_{\delta \in \mathcal{N}(i) \backslash \alpha} \varpi_{\delta \rightarrow i}^{(k)}
\end{aligned}
$$

- The result of decoding after $k$ iterations, denoted by $\mathbf{x}^{(k)}$ is determined by the sign of

$$
\begin{aligned}
& \quad m_{i}^{(k)}=\gamma_{i}+\sum_{\alpha \in \mathcal{N}(i)} \varpi_{\alpha \rightarrow i}^{(k)} \\
& \text { If } m_{i}^{(k)}>0 \text { then } x_{i}^{(k)}=0, \text { otherwise } x_{i}^{(k)}=1
\end{aligned}
$$

## The min-sum approximation (MSA)



$$
\begin{aligned}
& \mu_{f \rightarrow x}(x)=\prod_{y \in n(f) \backslash\{x\}} \operatorname{sgn}\left(\mu_{y \rightarrow f}\right) \\
& \min _{y \in n(f) \backslash\{x\}}\left|\mu_{y \rightarrow f}\right| \\
& g_{i}\left(x_{i}\right)=\lambda\left(x_{i}\right)+\sum_{h \in n\left(x_{i}\right)} \mu_{h \rightarrow x_{i}}
\end{aligned}
$$

## Poll Question 11

The min-sum decoder operates by sending messages between variable and check node processing units. After receiving all three messages from its neighboring checks, assuming that the channel value is -3 , the variable node processing unit of the variable shown in the picture below will send the following message to the check node processing unit of the remaining check:
A. $\operatorname{sign}(+3) \operatorname{sign}(-2) \operatorname{sign}(-2) \min (|+3|,|-2|,|-2|=+2$
B. $\operatorname{sign}(+3) \operatorname{sign}(-2) \operatorname{sign}(+2) \min (|+3|,|-2|,|+2|=-2$
C. $-1+\operatorname{sign}(+3) \operatorname{sign}(-2) \operatorname{sign}(-2) \min (|+3|,|-2|,|-2|=-3+2=-1$
D. $-1+\operatorname{sign}(+3) \operatorname{sign}(-2) \operatorname{sign}(+2) \min (|+3|,|-2|,|+2|=-3-2=-5$
E. $\infty$
F. $-\infty$
G. 0
H. -4
I. +4
J. I'm not sure


## Applications of LDPC codes

- Wireless networks, satellite communications, deep-space communications, power line communications
- Magnetic hard disk drives, optical communications, flash memories
- Standards include:
- Digital video broadcast over satellite (DVB-S2 Standard) and over cable (DVBC2 Standard), terrestrial television broadcasting (DVB-T2, DVB-T2-Lite Standards)
- GEO-Mobile Radio (GMR) satellite telephony (GMR-1 Standard), local and metropolitan area networks (LAN/MAN) (IEEE 802.11 (WiFi))
- Wireless personal area networks (WPAN) (IEEE 802.15.3c (60 GHz PHY)), wireless local and metropolitan area networks (WLAN/WMAN) (IEEE 802.16 (Mobile WiMAX)
- Near-earth and deep space communications (CCSDS), wire and power line communications (ITU-T G.hn (G.9960))
- Ultra-wide band technologies (WiMedia 1.5 UWB)

Center for Quantum
Networks NSF-ERC

## Quantum Fundamentals



The University of Arizona. Tucson Arizona

Center for Quantum
Networks NSF-ERC


Google


IonQ


IBM


Quantinuum

## A qubit is a 2-dimensional vector

- Computational basis states: "Ket 0", "Ket 1"

Dirac notation: $|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right],|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

- A single-qubit state:

$$
\begin{gathered}
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \\
\alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1
\end{gathered}
$$

Bloch Sphere Visualizing 1 qubit
$|0\rangle$

## Rotating to the conjugate basis

- Conjugate basis states: "Ket +", "Ket -"

Dirac notation: $\quad|+\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right],|-\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$

- A single-qubit state:

$$
\begin{aligned}
|\psi\rangle & =\alpha|0\rangle+\beta|1\rangle \\
& =\gamma|+\rangle+\delta|-\rangle
\end{aligned}
$$

Bloch Sphere Visualizing 1 qubit
$|0\rangle$

|1)

## What can you do with a qubit?

- Unitary operations: complex rotations, reversible

$$
U \in \mathbb{U}^{2 \times 2}: U^{-1}=U^{\dagger} \text { Hermitian transpose }
$$

- Measurement:


Bloch Sphere
Visualizing 1 qubit
1)

Center for Quantum
Networks NSF-ERC

## Single Qubit: Unitary Operations

## First quantum operation - Hadamard "gate"

- Switches between computational and conjugate bases

$$
\begin{array}{ll}
H|0\rangle=|+\rangle, & H|1\rangle=|-\rangle \\
H|+\rangle=|0\rangle, & H|-\rangle=|1\rangle
\end{array}
$$

- Matrix representation:

$$
\begin{gathered}
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
H^{-1}=H^{\dagger}=H
\end{gathered}
$$

Take any initial state

## First quantum operation - Hadamard "gate"

- Switches between computational and conjugate bases

$$
\begin{array}{ll}
H|0\rangle=|+\rangle, & H|1\rangle=|-\rangle \\
H|+\rangle=|0\rangle, & H|-\rangle=|1\rangle
\end{array}
$$

- Matrix representation:

$$
\begin{gathered}
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
H^{-1}=H^{\dagger}=H
\end{gathered}
$$

Take any initial state Rotate $90^{\circ}$ by $Y$ axis


## First quantum operation - Hadamard "gate"

- Switches between computational and conjugate bases

$$
\begin{array}{ll}
H|0\rangle=|+\rangle, & H|1\rangle=|-\rangle \\
H|+\rangle=|0\rangle, & H|-\rangle=|1\rangle
\end{array}
$$

- Matrix representation:

$$
\begin{gathered}
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
H^{-1}=H^{\dagger}=H
\end{gathered}
$$

Take any initial state Rotate $90^{\circ}$ by $Y$ axis Then rotate $180^{\circ}$ by $X$ axis


## Poll Question 12

If we start with the single qubit state $|0\rangle$ and apply the $H$ gate twice, what is the resulting state?
A. $|+\rangle$
B. $|-\rangle$
C. $|0\rangle$
D. |1>
E. None of the above
F. I'm not sure

## Pauli rotations

- The single-qubit Pauli matrices are: $(\imath=\sqrt{-1})$

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], Y=\left[\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right]
$$

- These are $\pi$-rotations: $R_{Z}(\theta)=e^{-\frac{i \theta}{2} Z}$

$$
\begin{aligned}
e^{-\frac{2 \pi}{2} Z} & =\left[\begin{array}{cc}
e^{-\frac{v \pi}{2}} & 0 \\
0 & e^{\frac{\pi}{2}}
\end{array}\right] \\
& =e^{-\frac{v \pi}{2}}\left[\begin{array}{ll}
1 & 0 \\
0 & e^{2 \pi}
\end{array}\right] \\
& \equiv Z
\end{aligned}
$$

Global phases don't matter!

|1)

## Pauli rotations

- The single-qubit Pauli matrices are: $(\imath=\sqrt{-1})$

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], Y=\left[\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right]
$$

- These are $\pi$-rotations: $R_{Z}(\theta)=e^{-\frac{i \theta}{2} Z}$


## Pauli rotations

- The single-qubit Pauli matrices are: $(\imath=\sqrt{-1})$

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], Y=\left[\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right]
$$

- Bit- and Phase-flip operations:

$$
\begin{aligned}
& X|0\rangle=X\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=|1\rangle \\
& Z|0\rangle=|0\rangle, Z|1\rangle=-|1\rangle \\
& Y=\imath X Z \quad \text { (Bit-Phase flip) }
\end{aligned}
$$


|1)

## Pauli rotations

- The single-qubit Pauli matrices are: $(\imath=\sqrt{-1})$

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], Y=\left[\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right]
$$

- Bit- and Phase-flip operations:

$$
\begin{aligned}
& Z|+\rangle \propto Z\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=|-\rangle \\
& X|+\rangle=|+\rangle, X|-\rangle=-|-\rangle \\
& Y=\imath X Z \quad \text { (Bit-Phase flip) }
\end{aligned}
$$

$\qquad$

## Arbitrary single-qubit gate

- How can we implement an arbitrary unitary operation?
- Classical Computing: NAND and NOR are universal
- Quantum Computing: A finite but universal gate set?


## Universal gate set for one qubit

- The single-qubit Pauli gates are: $\quad(\imath=\sqrt{-1})$

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], Y=\left[\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right]
$$

- Hadamard gate:

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{X+Z}{\sqrt{2}}
$$

- $T$ gate ( $\pi / 4$-rotation):

$$
\begin{aligned}
T & =\left[\begin{array}{cc}
1 & 0 \\
0 & e^{\imath \pi / 4}
\end{array}\right] \equiv e^{-\frac{\imath \pi}{8} Z} \\
T^{4} & =Z, H Z H=X, Y=\imath X Z
\end{aligned}
$$

## Poll Question 13

The Phase gate is defined by $P=\sqrt{Z}=T^{2}$. What is the matrix representation of the Phase gate?
A. $P=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
B. $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
C. $P=\left[\begin{array}{cc}1 & 0 \\ 0 & -l\end{array}\right]$
D. $P=\left[\begin{array}{ll}1 & 0 \\ 0 & l\end{array}\right]$
E. None of the above
F. I'm not sure

Center for Quantum
Networks NSF-ERC

## Single Qubit: Measurements

## Projective measurement

- Measure $Z$ on $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$; "Bra psi" $\langle\psi|=|\psi\rangle^{\dagger}$

1. First, diagonalize the measured "observable"

$$
Z=|0\rangle\langle 0|-|1\rangle\langle 1|
$$

2. Define projectors from eigenvectors

$$
M_{+1}=|0\rangle\langle 0|, M_{-1}=|1\rangle\langle 1|
$$

3. Possible outcomes " +1 ", " -1 "

$$
\begin{aligned}
& \mathbb{P}[+1]=\langle\psi| M_{+1}|\psi\rangle=|\alpha|^{2} \\
& \mathbb{P}[-1]=\langle\psi| M_{-1}|\psi\rangle=|\beta|^{2}
\end{aligned}
$$



## Projective measurement

- Measure $Z$ on $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$; "Bra psi" $\langle\psi|=|\psi\rangle^{\dagger}$

1. First, diagonalize the measured "observable"

$$
Z=|0\rangle\langle 0|-|1\rangle\langle 1|
$$

2. Define projectors from eigenvectors

$$
M_{+1}=|0\rangle\langle 0|, M_{-1}=|1\rangle\langle 1|
$$

3. Possible outcomes " +1 ", " -1 "

$$
\begin{aligned}
& \mathbb{P}[+1]=\langle\psi| M_{+1}|\psi\rangle=|\alpha|^{2} \\
& \mathbb{P}[-1]=\langle\psi| M_{-1}|\psi\rangle=|\beta|^{2}
\end{aligned}
$$

4. Post-measurement state

$$
\left|\psi_{ \pm}\right\rangle=\frac{M_{ \pm 1}|\psi\rangle}{\sqrt{\mathbb{P}[ \pm 1]}}=|0 / 1\rangle
$$

## Information storage in a qubit

$$
\begin{gathered}
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \\
\alpha, \beta \in \mathbb{C},|\alpha|^{2}+|\beta|^{2}=1
\end{gathered}
$$

Technically, a qubit can store infinite information!
But NO measurement can retrieve it exactly!
This is true INDEPENDENT of the measurement basis

## Projective measurement

- Measure $X$ on $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\gamma|+\rangle+\delta|-\rangle$

1. First, diagonalize the measured "observable"

$$
X=|+\rangle\langle+|-|-\rangle\langle-|
$$

2. Define projectors from eigenvectors

$$
M_{+1}=|+\rangle\langle+|, M_{-1}=|-\rangle\langle-|
$$

3. Possible outcomes " +1 ", " -1 "

$$
\begin{aligned}
& \mathbb{P}[+1]=\langle\psi| M_{+1}|\psi\rangle=|\gamma|^{2} \\
& \mathbb{P}[-1]=\langle\psi| M_{-1}|\psi\rangle=|\delta|^{2}
\end{aligned}
$$



## Projective measurement

- Measure $X$ on $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\gamma|+\rangle+\delta|-\rangle$

1. First, diagonalize the measured "observable"

$$
X=|+\rangle\langle+|-|-\rangle\langle-|
$$

2. Define projectors from eigenvectors

$$
M_{+1}=|+\rangle\langle+|, M_{-1}=|-\rangle\langle-|
$$

3. Possible outcomes " +1 ", " -1 "

$$
\begin{aligned}
& \mathbb{P}[+1]=\langle\psi| M_{+1}|\psi\rangle=|\gamma|^{2} \\
& \mathbb{P}[-1]=\langle\psi| M_{-1}|\psi\rangle=|\delta|^{2}
\end{aligned}
$$

4. Post-measurement state

$$
\left|\psi_{ \pm}\right\rangle=\frac{M_{ \pm 1}|\psi\rangle}{\sqrt{\mathbb{P}[ \pm 1]}}=| \pm\rangle
$$

## Quantum circuit notation

- Single-qubit gates
$|\psi\rangle=U_{2}-U_{1}-U_{1} U_{2}|\psi\rangle$


Universal Set

$-\boxed{Y}=-\sqrt[Z]{X}-\sqrt[X]{X}=-\sqrt{Z}-\sqrt{Z}$

- Single-qubit measurements



## Poll Question 14

Let the initial state be $|0\rangle$. We apply the $H$ gate and then measure in the $Z$ basis. What is the probability of the measurement result -1 and what is the corresponding postmeasurement state?
A. $\frac{1}{2}$ and $|1\rangle$
B. $\frac{1}{\sqrt{2}}$ and $|1\rangle$
C. $\frac{1}{2}$ and $|0\rangle$
D. $\frac{1}{\sqrt{2}}$ and $|0\rangle$
E. I'm not sure

Center for Quantum
Networks NSF-ERC

## Multiple Qubits

## Moving beyond one qubit

## Controlled-NOT gate: Flip target qubit if control qubit is 1

Control qubit
Target qubit $|b\rangle-\infty-|a \oplus b\rangle$
$\underset{\mathrm{CX}}{\mathrm{CNOT}}=\left[\begin{array}{ll}I & 0 \\ 0 & X\end{array}\right]=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

| Input <br> $(a, b)$ | Output <br> $(a, a \oplus b)$ |
| :---: | :---: |
| 00 | 00 |
| 01 | 01 |
| 10 | 11 |
| 11 | 10 |

Universal gates on $n$ qubits:


## Kronecker (or Tensor) product

$$
\begin{aligned}
A_{m \times n} \otimes B_{p \times q} & =\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \otimes\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 q} \\
b_{21} & b_{22} & \cdots & b_{2 q} \\
\vdots & \vdots & \ddots & \vdots \\
b_{p 1} & b_{p 2} & \cdots & b_{p q}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
b_{11} & \cdots & b_{1 q} \\
a_{11} \times\left[\begin{array}{ccc}
b_{11} \\
\vdots & \ddots & \vdots \\
b_{p 1} & \cdots & b_{p q}
\end{array}\right] & a_{12} \times B & \cdots & a_{1 n} \times B \\
a_{21} \times & B & a_{22} \times B & \cdots \\
\vdots & & a_{2 n} \times B \\
& a_{m 1} \times B & a_{m 2} \times B & \cdots \\
& & a_{m n} \times B
\end{array}\right]_{m p \times n q} \times
\end{aligned}
$$

## Useful Property: $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$

## Moving beyond one qubit

## Controlled-NOT gate: Flip target qubit if control qubit is 1

Control qubit
Target qubit $|b\rangle-\infty-|a \oplus b\rangle$

$$
\begin{aligned}
& |10\rangle=|1\rangle \otimes|0\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \begin{array}{ll}
01 & 01 \\
10 & 11 \\
11 & 10
\end{array} \\
& \text { CNOT }|10\rangle=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right]=|11\rangle
\end{aligned}
$$

## Superposition + Linearity $\rightarrow$ Entanglement


$\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ CANNOT be expressed as a tensor product $|\psi\rangle \otimes|\phi\rangle$

## The multi-qubit formalism

- Computational basis states:

$$
|v\rangle=\left|v_{1} v_{2} \cdots v_{n}\right\rangle=\left|v_{1}\right\rangle \otimes\left|v_{2}\right\rangle \otimes \cdots \otimes\left|v_{n}\right\rangle \in \mathbb{C}^{2^{n}} ; v_{i} \in\{0,1\}
$$

- State vector for an $n$-qubit state:

$$
|\psi\rangle=\sum_{v \in\{0,1\}^{n}} \alpha_{v}|v\rangle \in \mathbb{C}^{2^{n}} ; \alpha_{v} \in \mathbb{C}, \||\psi\rangle \|_{2}^{2}=\sum_{v \in\{0,1\}^{n}}\left|\alpha_{v}\right|^{2}=1
$$

- Unitary operations on the state:

$$
|\psi\rangle \mapsto U|\psi\rangle \in \mathbb{C}^{2^{n}} ; U \in \mathbb{U}^{2^{n} \times 2^{n}}, U^{-1}=U^{\dagger}, \| U|\psi\rangle \|_{2}=1
$$

- Projective measurement of an "observable" 0 :

$$
O=O^{\dagger}=\sum_{i} m_{i} M_{i}, \mathbb{P}\left[m_{i}\right]=\langle\psi| M_{i}|\psi\rangle,\left|\psi_{i}\right\rangle=\frac{M_{i}|\psi\rangle}{\sqrt{\mathbb{P}\left[m_{i}\right]}}
$$

## Poll Question 15

What is the result of $(X \otimes Z)(|0\rangle \otimes|1\rangle)$ ?
A. $|1\rangle \otimes|1\rangle$
B. $-|1\rangle \otimes|0\rangle$
C. $-|0\rangle \otimes|1\rangle$
D. $-|1\rangle \otimes|1\rangle$
E. I'm not sure

Center for Quantum
Networks NSF-ERC

## Entanglement and Stabilizers

## Entanglement: Bell Pairs



What happens if we measure the first qubit in the $Z$ basis?

$$
M_{+1}=|0\rangle\left\langle\left. 0\right|_{\mathrm{A}} \otimes I_{\mathrm{B}}, M_{-1}=\mid 1\right\rangle\left\langle\left. 1\right|_{\mathrm{A}} \otimes I_{\mathrm{B}}\right.
$$

## First qubit collapses to $0 / 1 \&$ so does the second qubit too!

Bell Basis: $\left|\Phi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|00\rangle_{\mathrm{AB}} \pm|11\rangle_{\mathrm{AB}}}{\sqrt{2}},\left|\Psi^{ \pm}\right\rangle=\frac{|01\rangle_{\mathrm{AB}} \pm|10\rangle_{\mathrm{AB}}}{\sqrt{2}}$

## Stabilizers of Bell Pairs

Bell Basis: $\left|\Phi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|00\rangle_{\mathrm{AB}} \pm|11\rangle_{\mathrm{AB}}}{\sqrt{2}},\left|\Psi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|01\rangle_{\mathrm{AB}} \pm|10\rangle_{\mathrm{AB}}}{\sqrt{2}}$
These are $\pm 1$-eigenvalued eigenvectors of $Z Z, X X,-Y Y, I I$ :

$$
\begin{aligned}
Z_{\mathrm{A}} Z_{\mathrm{B}}\left|\Phi^{ \pm}\right\rangle_{\mathrm{AB}} & =(Z \otimes Z)\left(\frac{|0\rangle \otimes|0\rangle \pm|1\rangle \otimes|1\rangle}{\sqrt{2}}\right) \\
& =\frac{Z|0\rangle \otimes Z|0\rangle \pm Z|1\rangle \otimes Z|1\rangle}{\sqrt{2}} \\
& =\frac{|0\rangle \otimes|0\rangle \pm(-|1\rangle) \otimes(-|1\rangle)}{\sqrt{2}} \\
& =\left|\Phi^{ \pm}\right\rangle_{\mathrm{AB}}
\end{aligned}
$$

## Stabilizers of Bell Pairs

Bell Basis: $\left|\Phi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|00\rangle_{\mathrm{AB}} \pm|11\rangle_{\mathrm{AB}}}{\sqrt{2}},\left|\Psi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|01\rangle_{\mathrm{AB}} \pm|10\rangle_{\mathrm{AB}}}{\sqrt{2}}$
These are $\pm 1$-eigenvalued eigenvectors of $Z Z, X X,-Y Y, I I$ :

$$
\begin{aligned}
Z_{\mathrm{A}} Z_{\mathrm{B}}\left|\Psi^{ \pm}\right\rangle_{\mathrm{AB}} & =(Z \otimes Z)\left(\frac{|0\rangle \otimes|1\rangle \pm|1\rangle \otimes|0\rangle}{\sqrt{2}}\right) \\
& =\frac{Z|0\rangle \otimes Z|1\rangle \pm Z|1\rangle \otimes Z|0\rangle}{\sqrt{2}} \\
& =\frac{|0\rangle \otimes(-|1\rangle) \pm(-|1\rangle) \otimes|0\rangle}{\sqrt{2}} \\
& =-\left|\Psi^{ \pm}\right\rangle_{\mathrm{AB}}
\end{aligned}
$$

## Stabilizer States

Bell Basis: $\left|\Phi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|00\rangle_{\mathrm{AB}} \pm|11\rangle_{\mathrm{AB}}}{\sqrt{2}},\left|\Psi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|01\rangle_{\mathrm{AB}} \pm|10\rangle_{\mathrm{AB}}}{\sqrt{2}}$ (EPR: Einstein-Podolsky-Rosen)

Stabilizers:

$$
\left\langle Z_{\mathrm{A}} Z_{\mathrm{B}}, \pm X_{\mathrm{A}} X_{\mathrm{B}}\right\rangle
$$

$$
\left\langle-Z_{\mathrm{A}} Z_{\mathrm{B}}, \pm X_{\mathrm{A}} X_{\mathrm{B}}\right\rangle
$$

Elements of the stabilizer must mutually commute to have a common eigenbasis, i.e., the same set of eigenvectors diagonalize all stabilizer elements. Key fact: $X Z=-Z X$

An $n$-qubit stabilizer state has $n$ Pauli stabilizer generators

## Stabilizer States

Bell Basis: $\left|\Phi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|00\rangle_{\mathrm{AB}} \pm|11\rangle_{\mathrm{AB}}}{\sqrt{2}},\left|\Psi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|01\rangle_{\mathrm{AB}} \pm|10\rangle_{\mathrm{AB}}}{\sqrt{2}}$ (EPR: Einstein-Podolsky-Rosen)

Stabilizers:

$$
\left\langle Z_{\mathrm{A}} Z_{\mathrm{B}}, \pm X_{\mathrm{A}} X_{\mathrm{B}}\right\rangle
$$

$$
\left\langle-Z_{\mathrm{A}} Z_{\mathrm{B}}, \pm X_{\mathrm{A}} X_{\mathrm{B}}\right\rangle
$$

GHZ Basis: GHZ$\rangle_{\mathrm{ABC}}=\frac{|000\rangle_{\mathrm{ABC}}+|111\rangle_{\mathrm{ABC}}}{\sqrt{2}}$ and its variants (GHZ: Greenberger-Horne-Zeilinger)

Stabilizers: $\left\langle \pm Z_{\mathrm{A}} Z_{\mathrm{B}} I_{\mathrm{C}}, \pm I_{\mathrm{A}} Z_{\mathrm{B}} Z_{\mathrm{C}}, \pm X_{\mathrm{A}} X_{\mathrm{B}} X_{\mathrm{C}}\right\rangle$

An $n$-qubit stabilizer state has $n$ Pauli stabilizer generators

## Poll Question 16

What are the stabilizer generators of $\frac{|001\rangle+|110\rangle}{\sqrt{2}}$ ? The state must have eigenvalue +1 for these operators.
A. $\langle Z Z I, I Z Z, X X X\rangle$
B. $\langle Z Z I, I Z Z,-X X X\rangle$
C. $\langle Z Z I,-I Z Z, X X X\rangle$
D. $\langle-Z Z I, I Z Z, X X X\rangle$
E. $\langle Z Z I,-I Z Z,-X X X\rangle$
F. $\langle-Z Z I,-I Z Z, X X X\rangle$
G. I'm not sure

Center for Quantum
Networks NSF-ERC

## The Stabilizer Formalism

## Operations on stabilizer states



Here we can track the state quite easily, with length 4 vectors


This is more complicated to track! With $n$ qubits we have length $2^{n}$ !

## Clifford gates

Unitary operations $U$ that map Paulis to Paulis under conjugation

$$
\mathcal{C}_{n}=\left\{U \in \mathbb{U}^{2^{n}}: U E U^{\dagger}=E^{\prime} \in \mathcal{P}_{n} \text { for all } E \in \mathcal{P}_{n}\right\}
$$

$\mathcal{P}_{n}=\left\{ \pm \imath E_{1} \otimes E_{2} \otimes \cdots \otimes E_{n} ; E_{j} \in\{I, X, Y, Z\}, j=1,2, \ldots, n\right\}$
(Clifford group \& Pauli group)
$\mathcal{C}_{n}=n$-qubit Clifford gates:

$-P=T T$

Universality: "Clifford + T"


Center for

## Clifford gates: Pauli tracking

$-\sqrt{Z}-\sqrt{P}-=-\sqrt{P}-\bar{Z}-\quad \mathcal{C}_{n}: U E U^{\dagger}=E^{\prime} \Longleftrightarrow U E=E^{\prime} U$
$-\sqrt{X}-\sqrt{P}-\sqrt{P}-\sqrt{Y}-\quad-\sqrt{x}-\sqrt{H}-\sqrt{H}-\sqrt{Z}$


Center for
Quantum
Networks
NSF-ERC

## Clifford gates: Pauli tracking



Center for
Quantum
Networks
NSF-ERC

## Clifford gates: Pauli tracking



Center for
Quantum
Networks
NSF-ERC

## Clifford gates: Pauli tracking



Center for
Quantum
Networks
NSF-ERC

## Clifford gates: Pauli tracking



Center for
Quantum
Networks
NSF-ERC

## Clifford gates: Pauli tracking



Center for
Quantum
Networks
NSF-ERC

## Clifford gates: Pauli tracking



Center for
Quantum
Networks
NSF-ERC

## Clifford gates: Pauli tracking



Center for
Quantum
Networks
NSF-ERC

## Clifford gates: Pauli tracking



Center for
Quantum
Networks
NSF-ERC

## Clifford gates: Pauli tracking



Center for
Quantum
Networks
NSF-ERC

## Clifford gates: Pauli tracking



Center for

## Pauli measurements



Compare measured operator $Z_{A}$ with each stabilizer

1. $Z_{A}$ anticommutes with $X_{A} X_{B}$ : replace with $\pm Z_{A}$
2. $Z_{A}$ commutes with $Z_{A} Z_{B}$ : retain the stabilizer

Output stabilizer: $\left\langle \pm Z_{A}, Z_{A} Z_{B}\right\rangle \equiv\left\langle \pm Z_{A}, \pm Z_{B}\right\rangle \equiv|00\rangle /|11\rangle$

## Pauli measurements



$$
\begin{aligned}
& X Z=-Z X \\
& X Y=-Y X \\
& Z Y=-Y Z
\end{aligned}
$$

$$
\left\langle Z_{\mathrm{A}}, Z_{\mathrm{B}}\right\rangle \quad\left\langle X_{\mathrm{A}} X_{\mathrm{B}}, Z_{\mathrm{A}} Z_{\mathrm{B}}\right\rangle \quad ?
$$

Compare measured operator $Y_{A}$ with each stabilizer

1. $Y_{A}$ anticommutes with $X_{A} X_{B}$ : replace with $\pm Y_{A}$
2. $Y_{A}$ anticommutes with $Z_{A} Z_{B}$ : multiply $Z_{A} Z_{B}$ with $X_{A} X_{B}$

Output stabilizer: $\left\langle \pm Y_{A},-Y_{A} Y_{B}\right\rangle \equiv\left\langle \pm Y_{A}, \mp Y_{B}\right\rangle$

## Gottesman-Knill theorem

Clifford gates and Pauli measurements on input stabilizer states can be efficiently simulated classically, by simply tracking the stabilizers of the input state through the circuit!

## Stabilizer Circuits: Cliffords + Pauli measurements

## Poll Question 17

What are the stabilizers for the output of the following circuit if the measurement result is +1 ?

A. $\langle-X X, X I\rangle=\langle-I X, X I\rangle$
B. $\langle-X X,-X I\rangle=\langle I X,-X I\rangle$
C. $\langle-X X, Z Z\rangle=\langle-X X, Y Y\rangle$
D. $\langle X X,-X I\rangle=\langle-I X,-X I\rangle$
E. I'm not sure

## Protecting information with entanglement

## Pauli errors (and beyond)

- Recall the $n$-qubit Pauli group:
$\mathcal{P}_{n}=\left\{ \pm \imath E_{1} \otimes E_{2} \otimes \cdots \otimes E_{n} ; E_{j} \in\{I, X, Y, Z\}, j=1,2, \ldots, n\right\}$
- Each element can also be thought of as an error operator, since Pauli matrices form an orthogonal basis for all matrices under the trace inner product: $\langle A, B\rangle_{\operatorname{Tr}}:=\operatorname{Tr}\left(A^{\dagger} B\right)$
- Key Result: if Pauli errors on $t$ qubits can be corrected, then any linear combination of them can also be corrected
- Goal: design quantum codes that correct Pauli errors


## Stabilizer States

Bell Basis: $\left|\Phi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|00\rangle_{\mathrm{AB}} \pm|11\rangle_{\mathrm{AB}}}{\sqrt{2}},\left|\Psi^{ \pm}\right\rangle_{\mathrm{AB}}=\frac{|01\rangle_{\mathrm{AB}} \pm|10\rangle_{\mathrm{AB}}}{\sqrt{2}}$ (EPR: Einstein-Podolsky-Rosen)

Stabilizers:

$$
\left\langle Z_{\mathrm{A}} Z_{\mathrm{B}}, \pm X_{\mathrm{A}} X_{\mathrm{B}}\right\rangle
$$

$$
\left\langle-Z_{\mathrm{A}} Z_{\mathrm{B}}, \pm X_{\mathrm{A}} X_{\mathrm{B}}\right\rangle
$$

GHZ Basis: $|\mathrm{GHZ}\rangle_{\mathrm{ABC}}=\frac{|000\rangle_{\mathrm{ABC}}+|111\rangle_{\mathrm{ABC}}}{\sqrt{2}}$ and its variants (GHZ: Greenberger-Horne-Zeilinger)

Stabilizers: $\left\langle \pm Z_{\mathrm{A}} Z_{\mathrm{B}} I_{\mathrm{C}}, \pm I_{\mathrm{A}} Z_{\mathrm{B}} Z_{\mathrm{C}}, \pm X_{\mathrm{A}} X_{\mathrm{B}} X_{\mathrm{C}}\right\rangle$

An $n$-qubit stabilizer state has $n$ Pauli stabilizer generators

## The three-qubit code

$$
\begin{aligned}
& \left.\begin{array}{l}
|0\rangle-H \\
|0\rangle
\end{array}\right\} \operatorname{CNOT}\left(\frac{|00\rangle+|10\rangle}{\sqrt{2}}\right)=\frac{|00\rangle+|11\rangle}{\sqrt{2}} \\
& \left\langle Z_{\mathrm{A}} Z_{\mathrm{B}}, X_{\mathrm{A}} X_{\mathrm{B}}\right\rangle
\end{aligned}
$$

From GHZ stabilizers $\langle Z Z I, I Z Z, X X X\rangle$ drop $X X X$ to create a logical qubit!
Stabilizers: $\langle Z Z I, I Z Z\rangle$ (they commute), $\overline{|\psi\rangle}$ is a +1-eigenvector for all $\alpha, \beta$

## Syndrome measurement

Suppose that after encoding the logical qubit the error $X_{1}$ acts on the state

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle \\
& |00\rangle\left\{\begin{array}{l}
\infty \\
\hline
\end{array}\right\}|\eta\rangle=\alpha|100\rangle+\beta|011\rangle
\end{aligned}
$$

Measure the stabilizer generators $S_{1}=Z Z I$ and $S_{2}=I Z Z$ :


## Syndrome measurement

Measure the stabilizer generators $S_{1}=Z Z I$ and $S_{2}=I Z Z$ :


The error $X$ propagates through the CNOT and flips the measurement

Hence, the measurement results in -1 whenever there are an odd number of $X^{\prime}$ s on the ancilla (through the CNOT gates), i.e., when the error anticommutes with the stabilizer $S_{i}$

## Poll Question 18

Given the stabilizers $\left\langle S_{1}=Z Z I, S_{2}=I Z Z\right\rangle$ of the code, what is the syndrome for the error IXI?
A. $(+1,+1)$
B. $(+1,-1)$
C. $(-1,+1)$
D. $(-1,-1)$
E. I'm not sure

## Binary representation

Map an $n$-qubit Hermitian Pauli matrix to a pair of binary vectors:

$$
\begin{aligned}
& \text { Example for } n=3: \quad X \otimes Z \otimes Y \longrightarrow E(\boldsymbol{a}, \boldsymbol{b}) \\
& \begin{array}{rlr}
\boldsymbol{a} & =\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] & (X \text { component }) \\
\boldsymbol{b} & =\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] & (Z \text { component })
\end{array}
\end{aligned}
$$

How to check if $E(\boldsymbol{a}, \boldsymbol{b})=X \otimes Z \otimes Y$ and $E(\boldsymbol{c}, \boldsymbol{d})=Z \otimes Z \otimes X$ commute?
Compare operators on each qubit: $\quad X \otimes Z \otimes Y \mapsto\left(\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\right)$

$$
Z \otimes Z \otimes X \mapsto\left(\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right)\right.
$$

Symplectic inner product: $\langle[a, b],[c, d]\rangle_{\text {sym }}:=a d^{T}+b c^{T}$ (modulo 2$)$
$= \begin{cases}0 & \text { iff they commute } \\ 1 & \text { iff they anticommute }\end{cases}$

## Binary representation: errors

$$
\begin{aligned}
& \text { Stabilizers }(n=3): \quad Z \otimes Z \otimes I
\end{aligned}
$$

Let the error operator be $X \otimes I \otimes I \equiv X I I=E(\boldsymbol{c}, \boldsymbol{d})=E\left(\left[\begin{array}{lll}1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]\right.$
Symplectic inner product: $\langle[\boldsymbol{a}, \boldsymbol{b}],[\boldsymbol{c}, \boldsymbol{d}]\rangle_{\text {sym }}:=\boldsymbol{a} \boldsymbol{d}^{T}+\boldsymbol{b} \boldsymbol{c}^{T}$ (modulo 2)

$$
\text { Syndrome }=\left[\begin{array}{l}
\left\langle\left[a_{1}, b_{1}\right],[c, d]\right\rangle_{\mathrm{sym}} \\
\left\langle\left[a_{2}, b_{2}\right],[c, d]\right\rangle_{\mathrm{sym}}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$$
a_{1} d^{T}+b_{1} c^{T}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]^{T}+\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}=0+1=1(\bmod 2)
$$

## Quantum Parity-Check Matrices

$$
\left.\begin{array}{l}
\text { Stabilizers }(n=3): \quad Z \otimes Z \otimes I
\end{array} \quad \begin{array}{c}
I \otimes Z \otimes Z \\
(X \text { component) })
\end{array} \boldsymbol{a}_{\mathbf{1}}=\left[\begin{array}{llll}
0 & 0 & 0
\end{array}\right] \quad \boldsymbol{a}_{\mathbf{2}}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\right) \text { ( component) } \boldsymbol{b}_{\mathbf{1}}=\left[\begin{array}{llll}
1 & 1 & 0
\end{array}\right] \quad \boldsymbol{b}_{\mathbf{2}}=\left[\begin{array}{llll}
0 & 1 & 1
\end{array}\right] .
$$

$$
H=\left[\begin{array}{lll|lll}
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[H_{a} \mid H_{b}\right] ; \quad H_{a} H_{b}^{T}+H_{b} H_{a}^{T}=0
$$

Symplectic inner product: $\langle[\boldsymbol{a}, \boldsymbol{b}],[\boldsymbol{c}, \boldsymbol{d}]\rangle_{\text {sym }}:=\boldsymbol{a d}^{T}+\boldsymbol{b} \boldsymbol{c}^{T}$ (modulo 2 )

$$
\text { Syndrome }=\left[\begin{array}{l}
\left\langle\left[\boldsymbol{a}_{1}, \boldsymbol{b}_{1}\right],[\boldsymbol{c}, \boldsymbol{d}]\right\rangle_{\text {sym }} \\
\left\langle\left[\boldsymbol{a}_{2}, \boldsymbol{b}_{2}\right],[\boldsymbol{c}, \boldsymbol{d}]\right\rangle_{\mathrm{sym}}
\end{array}\right]=H_{a} d^{T}+H_{b} c^{T}
$$

## Minimum Distance and Logical Operators

$$
H=\left[\begin{array}{lll|lll}
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[H_{a} \mid H_{b}\right] ; \quad H_{a} H_{b}^{T}+H_{b} \boldsymbol{H}_{a}^{T}=0
$$

Syndrome $=\left[\begin{array}{l}\left\langle\left[\boldsymbol{a}_{1}, \boldsymbol{b}_{1}\right],[\boldsymbol{c}, \boldsymbol{d}]\right\rangle_{\text {sym }} \\ \left\langle\left[\boldsymbol{a}_{2}, \boldsymbol{b}_{2}\right],[\boldsymbol{c}, \boldsymbol{d}]\right\rangle_{\text {sym }}\end{array}\right]=H_{a} d^{T}+H_{b} c^{T}$
What are the "codewords" of this quantum code?

Minimum Distance: Minimum weight of any codeword
Codewords are referred to as logical operators

## Poll Question 19

Given the parity-check matrix $H=\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$ of the code, what is the binary syndrome for the error $X X X$ ?
A. $[0,0]^{T}$
B. $[0,1]^{T}$
C. $[1,0]^{T}$
D. $[1,1]^{T}$
E. I'm not sure

## Stabilizers and Logical Operators

$$
H=\left[\begin{array}{lll|lll}
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[H_{a} \mid H_{b}\right] ; \quad H_{a} \boldsymbol{H}_{b}^{T}+\boldsymbol{H}_{b} \boldsymbol{H}_{a}^{T}=\mathbf{0}
$$

Minimum Distance: Minimum weight of any codeword Codewords are referred to as logical operators


$$
\begin{aligned}
& |\psi\rangle_{L}=\alpha|0\rangle+\beta|1\rangle \longrightarrow \longrightarrow \quad[[3,1,1]] \text { Code } \\
& Z|0\rangle \\
& |0\rangle \\
& \overline{|\psi\rangle}=\alpha|000\rangle+\beta|111\rangle
\end{aligned}
$$

## Stabilizers and Logical Operators

$$
H=\left[\begin{array}{lll|lll}
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[H_{a} \mid H_{b}\right] ; \quad H_{a} H_{b}^{T}+H_{b} \boldsymbol{H}_{a}^{T}=0
$$

Minimum Distance: Minimum weight of any codeword Codewords are referred to as logical operators


## Stabilizers and Logical Operators

$$
H=\left[\begin{array}{lll|lll}
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[H_{a} \mid H_{b}\right] ; \quad H_{a} H_{b}^{T}+H_{b} \boldsymbol{H}_{a}^{T}=0
$$

Minimum Distance: Minimum weight of any codeword Codewords are referred to as logical operators


## Stabilizers and Logical Operators

$$
H=\left[\begin{array}{lll|lll}
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[H_{a} \mid H_{b}\right] ; H_{a} H_{b}^{T}+H_{b} H_{a}^{T}=0
$$

Minimum Distance: Minimum weight of any codeword Codewords are referred to as logical operators


$$
X|\psi\rangle_{L}=\alpha|0\rangle+\beta|1\rangle \ldots+\ldots
$$

## Stabilizers and Logical Operators

$$
H=\left[\begin{array}{lll|lll}
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[H_{a} \mid H_{b}\right] ; \quad H_{a} H_{b}^{T}+H_{b} \boldsymbol{H}_{a}^{T}=0
$$

Minimum Distance: Minimum weight of any codeword Codewords are referred to as logical operators


## Stabilizers and Logical Operators

$$
H=\left[\begin{array}{lll|lll}
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[H_{a} \mid H_{b}\right] ; \quad H_{a} H_{b}^{T}+H_{b} \boldsymbol{H}_{a}^{T}=0
$$

Minimum Distance: Minimum weight of any codeword Codewords are referred to as logical operators


## The Steane code

[7,4,3] Hamming Code: $\quad H=\left[\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1\end{array}\right]$
[[7,1,3]] Steane Code: $\quad H_{S}=\left[H_{a} \mid H_{b}\right]=\left[\begin{array}{c|c}H & 0 \\ \hline 0 & H\end{array}\right]_{Z}^{X}$

$$
H_{a} H_{b}^{T}+H_{b} H_{a}^{T}=\left[\begin{array}{c|c}
0 & H H^{T} \\
\hline 0 & 0
\end{array}\right]=0
$$

Logical Operators: $\quad \bar{X}=\left[\begin{array}{lllllll|llllll}1 & 1 & 1 & 1 & 1 & 1 & 1 \mid & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$ $\bar{Z}=\left[\begin{array}{lllllll|lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

## Standard array decoding

ML decoding: $\quad \hat{x}=\operatorname{argmin} d(x, y=110101)$

$$
x \in \mathcal{C}
$$

$$
2^{k}
$$

| $2^{n-k}$ | 000000 | 001011 | 010110 | 100101 | 011101 | 101110 | 110011 | 111000 | 000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 000001 | 001010 | 010111 | 100100 | 011100 | 101111 | 110010 | 111001 | 001 |
|  | 000010 | 001001 | 010100 | 100111 | 011111 | 101100 | 110001 | 111010 | 010 |
|  | 000100 | 001111 | 010010 | 100001 | 011001 | 101010 | 110111 | 111100 | 100 |
|  | 001000 | 000011 | 011110 | 101101 | 010101 | 100110 | 111011 | 110000 | 011 |
|  | 010000 | 011011 | 000110 | $\underline{110101}$ | 001101 | 111110 | 100011 | 101000 | 110 |
|  | 100000 | 101011 | 110110 | 000101 | 111101 | 001110 | 010011 | 011000 | 101 |

## Complexity scales exponentially!!

$$
\text { Syndrome }=\left[\begin{array}{c}
\left\langle\left[\boldsymbol{a}_{1}, \boldsymbol{b}_{1}\right],[\boldsymbol{c}, \boldsymbol{d}]\right\rangle_{\mathrm{sym}} \\
\vdots \\
\left\langle\left[\boldsymbol{a}_{14}, \boldsymbol{b}_{14}\right],[\boldsymbol{c}, \boldsymbol{d}]\right\rangle_{\mathrm{sym}}
\end{array}\right]=H_{a} d^{T}+H_{b} c^{T}
$$

Syndrome decoding: Given the measured syndrome, determine the most likely error $[c, d]$ that matches the measured syndrome

## Complexity scales exponentially!!

## Poll Question 20

Given the Steane code parity-check matrix $H_{S}=\left[H_{a} \mid H_{b}\right]=\left[\begin{array}{cc}H & 0 \\ 0 & H\end{array}\right]$ with

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right],
$$

what is the most likely error pattern corresponding to the syndrome $[0,1,0,0,0,0]^{T}$ ? Assume that the channel is memoryless, so it applies independent Pauli errors.
A. $\left[\begin{array}{llllll|llllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array} 000\right]$
B. [1001000|0000000]
C. $\left[\begin{array}{llllll|lllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0_{1}^{1} 1\right]$
D. $\left[\begin{array}{lllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right]$
E. $\left[\begin{array}{lllllll|llllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
F. I'm not sure

## CSS (Calderbank-Shor-Steane) Codes

- Consider two classical codes $C_{X}$ and $C_{Z}$ whose paritycheck matrices $H_{X}$ and $H_{Z}$ satisfy $H_{X} H_{Z}^{T}=0$
- Define the CSS (stabilizer) code by $H_{\mathrm{CSS}}=\left[\begin{array}{cc}\mathrm{C}_{X} & 0 \\ 0 & H_{Z}\end{array}\right]$
- Logical operators $[c, d]$ defined by $H_{X} d^{T}+H_{Z} c^{T}=0$
- Error $\left[e_{X}, e_{Z}\right] \Rightarrow$ syndrome is $s=H_{X} e_{Z}^{T}+H_{Z} e_{X}^{T}(\bmod 2)$
- $[[n, k, d]]=\left[\left[n, k_{X}+k_{Z}-n, w_{\min }\left(\left[C_{X} \backslash C_{Z}^{\frac{1}{Z}}\right] \cup\left[C_{Z} \backslash C_{X}^{\frac{1}{X}}\right]\right)\right]\right]$


## Surface code

## [[ $\left.\left.O\left(L^{2}\right), 1, L\right]\right]$




Wang et al. http://arxiv.org/abs/0905.0531

## Poll Question 21

Consider the following statements and answer if they are true or false:

1. Errors that produce a zero syndrome must be stabilizers or logical operators
2. The surface code stabilizer generators each involve either 3 or 4 qubits
A. 1 is True, 2 is False
B. 1 is False, 2 is True
C. 1 is True, 2 is True
D. 1 is False, 2 is False
E. I'm not sure

## Manipulating encoded information



QECC: Quantum Error Correcting Code

## Universal fault-tolerance

Universal gates on $k$ qubits:


Noisy


## Quantum LDPC codes

- Consider two classical LDPC codes $C_{X}$ and $C_{Z}$ whose parity-check matrices $H_{X}$ and $H_{Z}$ satisfy $H_{X} H_{Z}^{T}=0$
- Define the CSS QLDPC code by $H_{\text {QLDPC }}=\left[\begin{array}{cc}H_{X} & 0 \\ 0 & H_{Z}\end{array}\right]$
- Several QLDPC code families exist:
- Hypergraph Product codes, e.g., the surface code
- Bicycle and Generalized Bicycle codes
- Homological Product codes
- Lifted Product codes
- Quantum Tanner codes


## Syndrome-based iterative decoding

## Belief propagation (BP)



Variable node (VN) update:

$$
\mu_{x \rightarrow f}(x)=\prod_{h \in n(x) \backslash f\}} \mu_{h \rightarrow x}(x)
$$

Check node (CN) update:

$$
\mu_{f \rightarrow x}(x)=\sum_{\sim\{x\}}\left(f(X) \prod_{h \in n(f) \backslash\{x\}} \mu_{y \rightarrow f}(y)\right)
$$

Variable node (VN) decision:

$$
g_{i}\left(x_{i}\right)=\prod_{h \in n\left(x_{i}\right)} \mu_{h \rightarrow x_{i}}\left(x_{i}\right)
$$

## Poll Question 22

Consider a CSS QLDPC code constructed from classical codes $C_{X}$ and $C_{Z}$. Then which of the following is false?
A. $H_{X}$ and $H_{Z}$ are orthogonal
B. $H_{X}$ and $H_{Z}$ are sparse, i.e., have very few 1s
C. The code is a stabilizer code
D. Any stabilizer code is a CSS code
E. Universal computation requires fault-tolerant realizations of $H, T, C N O T$ on the logical qubits
F. I'm not sure

THE UNIVERSITY OF ARIZONA.

## Error Correction: Classical vs Quantum

- Classical: Decode based on received vector Quantum: Decode based only on measured syndrome
- Classical: Any sparse parity-check matrix gives LDPC Quantum: Need two sparse matrices that are orthogonal
- Classical: Only the zero vector causes trivial syndrome Quantum: All stabilizers have zero syndrome (degeneracy)
- Classical: Hardware noise quite low, mainly channel noise Quantum: Everything noisy - decoding + logical gates


## Challenges in QEC

- How to fully leverage degeneracy in QLDPC decoders?
- Local iterative algorithms that correct many errors?
- Can we physically realize good QLDPC codes in hardware despite their many long-range connections?
- Universal fault-tolerance on good QLDPC codes?
- ... and many more!

We value your feedback on all aspects of this short course. Please go to the link provided in the Zoom Chat or in the email you will soon receive to give your opinions of what worked and what could be improved.

## CQN Winter School on Quantum Networks

## Funded by National Science Foundation Grant \#1941583

Eale


