Quantum Networks
 The Physics Behind the Quantum Internet: A Gentle Introduction

Instructor: Michael G. Raymer

- University of Oregon

Co-Instructor: Abby Gookin

- University of Arizona

CQN Winter School on Quantum Networks

Funded by National Science Foundation Grant \#1941583

This work is supported primarily by the Engineering Research Centers Program of the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation.

Building the Quantum Internet

CQN is developing the entire technology stack to reliably carry quantum data across the globe, serving diverse applications across many user groups simultaneously... spurring new technology industries and a competitive marketplace of quantum service providers and application developers.

This work is supported primarily by the Engineering Research Centers Program of the National Science Foundation under NSF Cooperative Agreement No. 1941583. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation.

Funded by National Science Foundation Grant \#1941583

University of Massachusetts Amherst mencumpuar

HOWARD

university of OREGON

Quantum Networks
 The Physics Behind the Quantum Internet: A Gentle Introduction

Instructor: Michael G. Raymer

- University of Oregon

Co-Instructor: Abby Gookin

- University of Arizona

CQN Winter School on Quantum Networks

Funded by National Science Foundation Grant \#1941583

This work is supported primarily by the Engineering Research Centers Program of the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the National Science Foundation.

Textbook for non-experts

Concept of measurement Probability
Photon polarization Quantum cryptography Path interference Quantum States
Gravity sensors
Waves
Born rule
Bell inequalities
Entanglement
Teleportation
Quantum computing

MICHAEL G. RAYMER

POLL QUESTION 1

What is your highest level exposure to quantum theory?

A: None
B: High school
C: College
D: Self-taught

This short course can be useful for:

- Those completely new to quantum theory
- Those who learned the Schrodinger equation but not quantum information
- Those curious about effective ways to teach quantum information to non-experts

PART 1: Quantum information science

The Center for Quantum Networks
The National Quantum Initative
What is information?
Bits and qubits
Superposition and entanglement

PART 3: Bell State measurements
Photon polarization revisited Quantum measurement - Born's Rule Correlations and the Bell inequality Bell-Test experiments

PART 2: Encoding and transmitting quantum information
Communication systems
Distributing Entangled states (e.g.. in Space)
Ways of encoding qubits
Ways of encoding qubits in photons (Flying qubits)
Quantum state teleportation
Space-based quantum networks

PART 4: The Quantum Internet
Application \#1: Quantum Cryptography Bell-State Creating and Measuring Quantum memories
Application \#2: Memory-Assisted Teleportation
Entanglement Swapping with Quantum Memories
Quantum repeater networks
What could a quantum Network do?
Perspectives and misconceptions

Center for
Quantum
Networks NSF-ERC

The Physics Behind the Quantum Internet

One zundred fifteenth Congress of the

Lanited States of America

AT THE SECOND SESSION

Begun and held at the City of Washington on Wednesday, the third day of January, two thousand and eighteen

An Act

To provide for a coordinated Federal program to accelerate quantum research and development for the economic and national security of the United States.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE; TABLE OF CONTENTS.
(a) Short Title.-This Act may be cited as the "National Quantum Initiative Act".
(b) TABLE OF CONTENTS.-The table of contents of this Act is as follows:

Sec. 1. Short title; table of contents.
Sec. 2. Definitions.
Sec. 3. Purposes.

Quantum Science \& Technology Pillars

Quantum Computing

- Optimization
- Designer molecules (drugs, solar cells..)
- Materials design
- Pattern recognition
(Traffic patterns)
- Machine learning
- Artificial intelligence
- Decryption

Quantum
 Sensing

- Magnetic fields
- Gravitational fields
- Biomedical imaging
- Materials engineering
- GPS-free navigation
- Distributed sensing

Quantum Communication

- Secure data encryption
- Remote Q computing
- Distributed Q computing
- Distributed sensing
- Multiparty entangled protocols

> Quantum
> Communication
> enables and links together diverse quantum technologies

Centerfor
Quantum
Networks
NSF-ERC

What is 'Classical' Information?*

- Two types of "Information":
- Semantic Information is the meaningful knowledge that a message is to impart at the destination.
- Technical Information is the set of symbols that are sent.

Information Theory answers questions like:
How much information can be carried by a given number of symbols?

8 bits $=1$ byte
000000000
100000001
Encoding decimal numbers using binary numbers (bits)
200000010
300000011
400000100
500000101
600000110
700000111
800001000
900001001
1000001010

Center for
Quantum
Networks
NSF-ERC

What is a Bit?

A single memory element in a conventional computer can store 1 bit:

or

1 or 0

The value of the bit is represented in a physical object.

We call the condition of the switch its STATE

The position of a light switch is an example of a Classical State

POLL QUESTION 2 A Memory Cell containing Two classical bits:

memory cell

How many possibilities for switch settings (states) are there?

POLL QUESTION 2 A Memory Cell containing Two classical bits:

memory cell

How many possibilities for switch settings (states) are there?

These possibilities are called "Combined States"

(combined with)

Center for
Quantum Networks NSF-ERC

Two Ordinary bits: 4 possibilities

memory cell

Center for
Quantum
Networks
NSF-ERC

Two Ordinary bits:
 4 possibilities

memory cell

Center for
Quantum
Networks
NSF-ERC

Two Ordinary bits:
 4 possibilities

memory cell

Center for
Quantum
Networks
NSF-ERC

Two Ordinary bits:
 4 possibilities

memory cell

Center for
Quantum Networks NSF-ERC

Two Ordinary bits:
All 4 possibilities
memory cell

memory cell

memory cell

memory cell

Can represent and store only a single combination of values in a single memory cell at a given time.

POLL QUESTION 3

If there are 3 switches, how many unique combinations are there?

A: 3
B: 6

C: 8

D: 9

$$
2 \times 2 \times 2=2^{3}=8
$$

There are 8 unique "combined classical states"

Center for Quantum Networks NSF-ERC

If there are N switches, how many unique combinations are there?

Number of switches	Number of distinct combinations possible
1	2
2	$2 \times 2=4$
3	$2 \times 2 \times 2=8$
4	$2 \times 2 \times 2 \times 2=16$
5	$2 \times 2 \times 2 \times 2 \times 2=32$
6	$2 \times 2 \times 2 \times 2 \times 2 \times 2=64$
7	$2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=128$
8	$2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=256$
9	$2 \times 2 \times 2=512$
10	$2 \times 2 \times 2=1024$

Concept of Quantum Bit (Qubit)

Recall: A memory element in a conventional computer: "Either-Or"

Ordinary bit:

classical bit states

A memory element in a quantum computer: "Quantum Superposition" Quantum bit (qubit):

"two possibilities upon measurement"

qubit states
Dirac Notation: $|1\rangle+|0\rangle$

Measuring the qubit gives either 1 or $\mathbf{0}$ (true randomness)

Center for
Quantum Networks NSF-ERC

Quantum Information Science is enabled by State Superposition and Entanglement

Superposition of States of a single switch (qubit):
" + " means
"in superposition with"

Combined State of two qubits:
\& means "and"

Purple Box= Two qubits in a combined quantum state

Entangled Combined State of two qubits (example):

How to represent entangled states in elementary objects?

A line of 51 individual atoms (ions) trapped in vacuum

Atoms are not classical, they are quantum! Their state is not well described using classical physics theory.

each ion has
electron spinning
cw or ccw

How to represent entangled states in elementary objects?

A line of 51 individual atoms (ions) trapped in vacuum

Atoms are not classical, they are quantum! Their state is not well described using classical physics theory.
spin state can
be cw or ccw

How to represent entangled states in elementary objects?

A line of 51 individual atoms (ions) trapped in vacuum

Atoms are not classical, they are quantum! Their state is not well described using classical physics theory.
superposition states are possible
focus on an electron in one ion

superposition with
same possibilities
for every ion

Center for
Quantum
Networks NSF-ERC

If we prepare and measure:

It does not mean 'both at the same time'. It does not mean 'or'. with 100% probability

If we prepare and measure:

If we prepare and measure:

We will get:

8o\%

If we prepare on o deg axis and measure on 30 deg rotation axis:

We will get:

Superposition means that a range of "Measurement Outcomes" are possible, depending on how you measure it. (No classical system behaves like this.)

Center for Quantum Networks NSF-ERC

Evidentally,

It does not mean 'both at the same time'. It does not mean 'or'.

Evidentally,

50\%

50\%

The observed results are called "Measurement Outcomes"

Center for Quantum Networks NSF-ERC

What if we repeat the same measurement on the same spin?

Center for
Quantum Networks NSF-ERC

What if we repeat the same measurement on the same spin?

Conclude: The state has been changed by the first measurement!

if we observe ccw and then measure it again around the same 30 deg axis

What will we observe?
A: ccw 100%
B: ccw $20 \%, \mathrm{cw} 80 \%$
$\mathrm{C}: \mathrm{ccw} 50 \%, \mathrm{cw} 50 \%$
D: Don't know

B: ccw 20%, cw 80%
C: ccw 50\%, cw 50\%
D: Don't know

Repeated like measurements give the same outcome

Example of a combined superposition state: $\left(\mathrm{Cw}_{\mathrm{A}} \& \mathrm{CW}_{\mathrm{B}}\right)+\left(\mathrm{CCW}_{\mathrm{A}} \& \mathrm{CCW}_{\mathrm{B}}\right)$

A more general entangled state:
$\left(\mathrm{CW}_{\mathrm{A}} \& \mathrm{CW}_{\mathrm{B}}\right)+\left(\mathrm{Cw}_{\mathrm{A}} \& \mathrm{CCW}_{\mathrm{B}}\right)+\left(\mathrm{CCW}_{\mathrm{A}} \& \mathrm{CW}_{\mathrm{B}}\right)+\left(\mathrm{CCW}_{\mathrm{A}} \& \mathrm{CCW}_{\mathrm{B}}\right)$

If we measure the spinning direction (cw or cw) of each ion, we can obtain any one of the four possible combinations.

Two Quantum bits: Entanglement

Let's make a measurement!

State $=\mathrm{x}\left(\mathrm{o}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{y}\left(\mathrm{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)+\mathrm{z}\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{w}\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)$
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ are numbers (between o and 1) that correspond to probabilities

Center for Quantum Networks NSF-ERC

Two Quantum bits: Entanglement

Let's make a measurement!

State $=x\left(\mathrm{o}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{y}\left(\mathrm{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)+\mathrm{z}\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{w}\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)$
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ are numbers (between o and 1) that correspond to probabilities

Two Quantum bits: Entanglement

Let's re-prepare the state and make a measurement RESET!

State $=x\left(\mathrm{o}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{y}\left(\mathrm{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)+\mathrm{z}\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{w}\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)$
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ are numbers (between o and 1) that correspond to probabilities

Two Quantum bits: Entanglement

Let's re-prepare the state and make a measurement RESET!

State $=\mathrm{x}\left(\mathrm{o}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{y}\left(\mathrm{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)+\mathrm{z}\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{w}\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)$
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ are numbers (between o and 1) that correspond to probabilities

Two Quantum bits: Entanglement

Let's re-prepare the state and make a measurement RESET!

State $=\mathrm{x}\left(\mathrm{o}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{y}\left(\mathrm{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)+\mathrm{z}\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{w}\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)$
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ are numbers (between o and 1) that correspond to probabilities

Two Quantum bits: Entanglement

Let's re-prepare the state and make a measurement RESET!

State $=\mathrm{x}\left(\mathrm{o}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{y}\left(\mathrm{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)+\mathrm{z}\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\mathrm{w}\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)$
$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ are numbers (between o and 1) that correspond to probabilities

Two Quantum bits: Entanglement

in the general case, what are the probabilities for outcomes?

State $=x\left(o_{A} \& o_{B}\right)+y\left(o_{A} \& 1_{B}\right)+z\left(\mathbf{1}_{A} \& o_{B}\right)+\mathrm{w}\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)$

$\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ are numbers (between o and 1) that correspond to probabilities

Born's Rule

The probability to observe $\left(\mathrm{o}_{\mathrm{A}} \& \mathrm{O}_{\mathrm{B}}\right)$ equals X^{2}
The probability to observe ($\mathrm{o}_{\mathrm{A}} \& \mathrm{l}_{\mathrm{B}}$) equals y^{2}
The probability to observe ($1_{\mathrm{A}} \& \mathrm{O}_{\mathrm{B}}$) equals Z^{2}
The probability to observe $\left(1_{\mathrm{A}} \& 1_{\mathrm{B}}\right)$ equals W^{2}

Max Born

Example: Entangled state of two quits

NON-POLL QUESTION

Say you measure the quit A and obtain 1.
What will a measurement of quit B then yield?

A: 0
B: 1
C: o or 1 with equal probabilities
D: I don't know

POLL QUESTION 5

Say you measure the qubit A and obtain 1.
Then you know that if qubit B is measured it must yield 1 .
What statement is true?

A: The observed outcome of A caused B to be in the 1 state.
B : The observed outcome of A allows you to infer that B is in the 1 state
C : The observed outcome for B is independent of that for A
D: I don't know

If measurement of A were a causal operation, we could

Center for Quantum
Networks NSF-ERC

The Physics Behind the Quantum Internet

PART 2

Encoding and Transmitting Quantum Information

PART 1: Quantum information science

The Center for Quantum Networks
The National Quantum Initative
What is information?
Bits and qubits
Superposition and entanglement

PART 2: Encoding and transmitting quantum information

Communication systems
Distributing Entangled states (e.g.. in Space)
Ways of encoding qubits
Ways of encoding qubits in photons (Flying qubits)
Quantum state teleportation
Space-based quantum networks

PART 4: The Quantum Internet
Application \#1: Quantum Cryptography
Bell-State Creating and Measuring
Quantum memories
Application \#2: Memory-Assisted Teleportation Entanglement Swapping with Quantum Memories Quantum repeater networks
What could a quantum Network do?
Perspectives and misconceptions

Center for Quantum Networks NSF-ERC

Communication Systems

Destination/
Memory
Message received

Information Theory answers these types of questions:

Q1. How much information can be carried by a certain number of symbols?

Q2. What new capabilities are made possible using quantum-state encoding?

What is a Quantum Communication Network? a network of channels and nodes that transmits or shares quantum information

What is quantum information? information encoded in quantum states of physical objects

How can we transform entanglement between nearby qubits to entanglement between far-separated qubits?

$$
\text { State }=\left(\mathrm{o}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)
$$

Entangled qubits separated by arbitrarily long distance!

Distributing Entangled States

Space-Based Quantum Communication

Alicia

At 12:00 noon Alicia observes qubit A to have value o.
At what time does Alicia know the state of qubit B, without observing it?

A: Immediately
B: Never
C: At 12:00 plus the time it takes light to travel from A to B
D: I don't know

Alicia qubit $A \quad B o b$ qubit B
At 12:oo noon Alicia observes qubit A to have value o.
At what time does Bob know the state of qubit B, without observing it?

A: Immediately
B: At 12:00 plus the time it takes light to travel from A to B
C: Never, unless Alice tells him what she observed
D: I don't know

At 12:00 noon Alicia observes qubit A to have value o.
Alicia knows the state of qubit B immediately, but Bob does not.
Alicia can phone Bob and tell him, but there is a time lag limited by the speed of any information signal (speed of light)

Whatever Alicia observes or does to qubit A in no way affects qubit B.

Electron spin states

The states of superconductor current

Stationary qubits
Most useful for storing quantum information

Flying qubits
Most useful for transmitting quantum information
Photon frequency

Photon beam path

Ways to encode information into single photons

1. polarization
2. location in space or time

Encoding in Polarization

Polarization can be oriented in various directions perpendicular to the direction of light's travel:

"0" and "1" are Logical Values Single photon encodes a "qubit"

Center for Quantum Networks NSF-ERC

Superposition

$$
\mathrm{V}+\mathrm{H}=\mathrm{D} \text { (diagonal) } \quad \mathrm{V}-\mathrm{H}=\mathrm{A} \text { (anti-diagonal) }
$$

Polarization can be oriented in any direction perpendicular to the direction of travel

Center for Quantum Networks NSF-ERC

Fragility: A simple phase change can change the state drastically

$$
\mathrm{H}+\mathrm{V} \quad \text { " " " " }
$$

Phase changes (called "Decoherence") will lead to errors.

Center for
Quantum Networks NSF-ERC

Entangled Polarization state of two photons

One photon:

Two photons A, B: Example State $=\left(\mathrm{o}_{\mathrm{A}} \& \mathrm{O}_{\mathrm{B}}\right)+\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)$

$$
=\left(\mathrm{H}_{\mathrm{A}} \& \mathrm{H}_{\mathrm{B}}\right)+\left(\mathrm{V}_{\mathrm{A}} \& \mathrm{~V}_{\mathrm{b}}\right)
$$

Sometimes we denote
polarization states using arrows:
$(\mathrm{H})=(\boldsymbol{\rightarrow})$

> Example Two-Photon State $$
=\left(\boldsymbol{\rightarrow}_{A} \& \boldsymbol{\rightarrow}_{B}\right)+\left(\boldsymbol{\uparrow}_{A} \& \boldsymbol{\uparrow}_{B}\right)
$$

$(\mathrm{V})=(\boldsymbol{\uparrow})$
(D) $=(\boldsymbol{\pi})$
$(\mathrm{A})=(\boldsymbol{\Gamma})$

Entangled Polarization State of two photons

POLL QUESTION 8

Two photons are in the entangled state:

$$
\text { State }=\left(\mathrm{H}_{\mathrm{A}} \& \mathrm{~V}_{\mathrm{B}}\right)+\left(\mathrm{V}_{\mathrm{A}} \& \mathrm{H}_{\mathrm{B}}\right)
$$

The A photon goes to Alice and the B photon to $B o b$
Bob measures his photon and obtains H .
What will Alice observe if she measures her photon using a polarizer that separates H and V ?

A: H
B: V
C : H or V with equal probabilities
D: I don't know

Center for Quantum Networks NSF-ERC

How to encode information into single photons?

1. polarization
2. location in space or time

Encoding in Location

Quantum (single-photon) light pulse

SINGLE-PHOTON AVALANCHE DETECTOR

Center for Quantum
Networks
NSF-ERC

Quantum (single-photon) light pulse

SINGLE-PHOTON AVALANCHE DETECTOR

time tagger

Encoding in Time of Arrival

Superposition

could be: "○" - "1" Same probabilities, but the minus state is distinct from the plus state.

Example State $=(\mathrm{o} \& \mathrm{o})+(\mathbf{1} \& \mathbf{1})$

State $=($ Early \& Early $)+($ Late \& Late $)$

How to transmit a quantum state from one place to a place far away?

No Copying of Qubit States Allowed:

You can't make a copy of a state without destroying the state of the original object.

A quantum communication network must transmit the state of the physical systems, although it may do so by state teleportation.

Center for
Quantum
Networks
NSF-ERC

Joint Measurement gives information about the pair, but not full information about each member

They are the same
(H,H) or (T,T)
can't say which

4
OUTCOME

Joint Qubit Measurement

Joint Measurement gives information about the pair, but not full information about each member
example outcome \#1

They are the same
(o, o) or $(\mathbf{1}, \mathbf{1})$
can't say which

4
OUTCOME

JM
state-preparing sources

State $_{B}=\left(\mathrm{o}_{\mathrm{B}}\right)+\left(\mathbf{1}_{\mathrm{B}}\right)$

State $_{C}=\left(\mathbf{o}_{C}\right)+\left(\mathbf{1}_{C}\right)$

Joint Qubit Measurement

Joint Measurement gives information about the pair, but not full information about each member

State $_{B}=\left(\mathrm{O}_{\mathrm{B}}\right)+\left(\mathbf{1}_{\mathrm{B}}\right)$
State $_{C}=\left(\mathbf{o}_{C}\right)+\left(\mathbf{1}_{C}\right)$

Entanglement Swapping

start with two separate entangled states

 of A and B
entangled state of C and D

$$
\left(\mathrm{O}_{\mathrm{A}} \& 1_{\mathrm{B}}\right)+\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{O}_{\mathrm{B}}\right) \quad \underset{\text { "and" }}{\&} \quad\left(\mathrm{o}_{\mathrm{C}} \& \mathbf{1}_{\mathrm{D}}\right)+\left(\mathbf{1}_{\mathrm{C}} \& \mathrm{o}_{\mathrm{D}}\right)
$$

Entanglement Swapping

Send B and C into a Joint Measurement. Outcome determines entangled state of A and D

EXAMPLE A,B and C,D are initially in the state as shown The joint measurement yields that B and C are the same. What is the state then created for A and D ?

$\left(\mathrm{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)+\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right) \quad \& \quad\left(\mathrm{o}_{\mathrm{C}} \& \mathbf{1}_{\mathrm{D}}\right)+\left(\mathbf{1}_{\mathrm{C}} \& \mathrm{o}_{\mathrm{D}}\right)$

Two possible cases:

$B=C=1$
THEN

IN SUPERPOSITION WITH
B = C = $\mathbf{0}$

$\left(\mathrm{O}_{\mathrm{C}} \& \underline{1_{\mathrm{D}}}\right)+\left(\mathbf{1}_{\mathrm{C}} \& \mathrm{OD}_{\mathrm{D}}\right)$

Final State:

$$
\left(\mathrm{O}_{\mathrm{A}} \& \mathrm{O}_{\mathrm{D}}\right)+\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{D}}\right)
$$

POLL QUESTION 9 A,B and C,D are initially in the state as shown The joint measurement yields that B and C are DIFFERENT. What is the state then created for A and D ?

A. $\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{D}}\right)+\left(\mathrm{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{D}}\right)$
B. $\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{o}_{\mathrm{B}}\right)+\left(\mathbf{o}_{\mathrm{C}} \& \mathbf{1}_{\mathrm{D}}\right)$
C. $\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{D}}\right)+\left(\mathbf{o}_{\mathrm{A}} \& \mathbf{o}_{\mathrm{D}}\right)$
D. I don't know
$\left(\mathrm{o}_{\mathrm{A}} \& 1_{\mathrm{B}}\right)+\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right) \quad \& \quad\left(\mathrm{o}_{\mathrm{C}} \& \mathbf{1}_{\mathrm{D}}\right)+\left(\mathbf{1}_{\mathrm{C}} \& \mathrm{o}_{\mathrm{D}}\right)$

ANSWER A,B and C,D are initially in the state as shown

The joint measurement yields that B and C are DIFFERENT. What is the state then created for A and D ?

$\left(\mathrm{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{B}}\right)+\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right) \quad \& \quad\left(\mathrm{o}_{\mathrm{C}} \& \mathbf{1}_{\mathrm{D}}\right)+\left(\mathbf{1}_{\mathrm{C}} \& \mathrm{o}_{\mathrm{D}}\right)$

Two Possible cases:
$\mathrm{B}=\mathbf{0}, \mathrm{C}=1$
Then

IN SUPERPOSITION WITH
B = 1, C = 0
$\left(O_{A} \& 1_{B}\right)+\left(\overline{1} \& O_{B}\right)$ \&
$\left(\mathrm{o}_{C} \& \mathrm{i}_{\mathrm{D}}\right)+\left(\mathrm{l}_{\mathrm{C}} \mathrm{o}_{\mathrm{D}}\right)$

Final State:

$$
\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{D}}\right)+\left(\mathrm{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{D}}\right)
$$

POLL QUESTION 9 A,B and C,D are initially in the state as shown The joint measurement yields that B and C are DIFFERENT. What is the state then created for A and D ?

A. $\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{D}}\right)+\left(\mathbf{o}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{D}}\right)$
B. $\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right)+\left(\mathrm{o}_{\mathrm{C}} \& \mathbf{1}_{\mathrm{D}}\right)$
C. $\left(\mathbf{1}_{\mathrm{A}} \& \mathbf{1}_{\mathrm{D}}\right)+\left(\mathbf{o}_{\mathrm{A}} \& \mathbf{o}_{\mathrm{D}}\right)$
D. I don't know
$\left(\mathrm{o}_{\mathrm{A}} \& 1_{\mathrm{B}}\right)+\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{o}_{\mathrm{B}}\right) \quad \& \quad\left(\mathrm{o}_{\mathrm{C}} \& \mathbf{1}_{\mathrm{D}}\right)+\left(\mathbf{1}_{\mathrm{C}} \& \mathrm{o}_{\mathrm{D}}\right)$

Quantum State Teleportation

Say you have an entangled pair of qubits A and B.
You want to transfer the state of B over to C so you have entanglement between A and C , leaving B unentangled.

Can be done by Quantum State Teleportation
If the distance is greater than $\sim 100 \mathrm{~km}$, you will need Quantum Repeaters, which have not yet been built

Prof Xavier wants to send the quantum state of particle X to Bob without sending particle X

State $_{x}=x\left(\mathrm{O}_{\mathrm{X}}\right)+\mathrm{y}\left(\mathbf{1}_{\mathrm{x}}\right)$

Prof Xavier

Quantum State Teleportation

Prof Xavier recruits Alice to help.
They arrange to acquire an entangled photon pair. They send B to Bob and A to Alice,

State $_{x}=x\left({ }_{\mathrm{o}}^{\mathrm{X}}\right)+\mathrm{y}\left(\mathbf{1}_{\mathrm{x}}\right)$

Prof Xavier

Quantum State Teleportation

Alice makes a jpint measurement of X with A

Quantum State Teleportation

is NOT instantaneous!

Alice never knows the state

Center for Quantum Networks NSF-ERC

Also works if the teleported state is one half of an entangled pair

Centerfor Quantum Networks NSF-ERC

Optical Quantum Memories

A photon is absorbed in a material medium in a way that its state is preserved.
The photon can be released at a later time.

Solves the synchronization problem

Memory-Assisted Quantum State Teleportation

entangled resource

 pre-shared and storedState $_{X}$

Prof Xavier

Statex \uparrow

Controlled
Transformation

Memory

Center for Quantum Networks NSF-ERC

Satellite-Assisted Quantum State Teleportation

$\left(\mathrm{O}_{\mathrm{A}} \& 1_{\mathrm{B}}\right)+\left(\mathbf{1}_{\mathrm{A}} \& \mathrm{O}_{\mathrm{B}}\right)$
joint

Why Quantum Entanglement Distribution in Space?

Short-term path to long-distance Quantum Internet -
-Remote/blind quantum computing

- Distributed quantum computing
- Secure Communications

Very long baseline interferometery

Entangled clock network

Quantum enhanced sensor network: e.g. planetary science, Earth science

Quantum enhanced fundamental physics, Quantum gravity / new physics

Center for
Quantum
Networks NSF-ERC

The Physics Behind the Quantum Internet

PART 1: Quantum information science

The Center for Quantum Networks
The National Quantum Initative
What is information?
Bits and qubits
Superposition and entanglement

PART 2: Encoding and transmitting quantum information

Communication systems
Distributing Entangled states (e.g.. in Space)
Ways of encoding qubits
Ways of encoding qubits in photons (Flying qubits)
Quantum state teleportation
Space-based quantum networks

PART 4: The Quantum Internet
Application \#1: Quantum Cryptography
Bell-State Creating and Measuring
Quantum memories
Application \#2: Memory-Assisted Teleportation Entanglement Swapping with Quantum Memories Quantum repeater networks
What could a quantum Network do?
Perspectives and misconceptions

REVIEW: Photon Polarization

Superposition

$$
\begin{gathered}
\mathrm{V}+\mathrm{H}=\mathrm{D} \text { (diagonal) } \\
\mathrm{V}-\mathrm{H}=\mathrm{A} \text { (anti-diagonal) }
\end{gathered}
$$

detectors

Polarization can be oriented in any direction perpendicular to the direction of travel

D-pol is a special combination of H -pol and V -pol

D-pol

'Direction Indicator'

AddingPolarizationsWithPhaseShifts-Demonstrations Project.nb

Initialize:

AddingPolarizationsWithPhaseShifts-Demonstrations Project.nb
1.

2.

88

POLL QUESTION 10

What is the polarization of transmitted light after the vertical polarizer?

POLL QUESTION 11
What is the polarization of
transmitted light after the horizontal polarizer?

If only a Single Photon is sent into this polarizer, what is the probability it will make it through?

: 0\%
: 25%
: 50%
: 100\%

If only a Single Photon is sent into this series of polarizers, what is the probability it will make it through?

If only a Single Photon is sent into this series of polarizers, what is the probability it will make it through?

50% at each polarizer

V DIRECTION
symbol: Ψ name: psi
a quantum state is not a property of the photon; it is a description of the photon

Max Born
$\mathbf{a}=$ length
of projection

Probability = $\mathbf{a}^{\mathbf{2}}$

Born's Rule

To find the probability for a photon to be observed passing through a polarizer set for any given measurement scheme, project the photon's polarization arrow onto the polarizer axis, then square the length of the projection.

Center for
Quantum Networks NSF-ERC

Born's Rule

What about the other polarization axis?

Probability $=\mathbf{a}^{\mathbf{2}}$
right-angle line from
Complementary Probability = $\mathbf{b}^{\mathbf{2}}$

$$
a^{2}+b^{2}=1^{2}
$$

Center for Quantum
Networks
NSF-ERC

State Arrow (vector) representation of Polarization Qubit

Calcite crystals as Polarization Analyzers (Sorters)

Arbitrary state of polarization:

probabilities $=x^{2}$ and y^{2}

Probabilities

Center for Quantum Networks NSF-ERC
 INHERENT PROPERTY LIST OR INSTRUCTIONS LIST (A CLASSICAL-PHYSICS MODEL FOR CORRELATIONS)

A chain of POLARIZATION ANALYZERS

Imagine each photon having its own set of instructions. The inherent properties list gets longer.. could this be the way the world works??? (if so then there is no deeper physics theory beyond the list.) Can we design an experiment that rules this out?

photon	$\begin{aligned} & \text { HN } \\ & \text { Response } \end{aligned}$	$\begin{gathered} \text { A/D } \\ \text { Response } \end{gathered}$	$\begin{gathered} \text { H/V } \\ \text { Response } \end{gathered}$	etc.
1	H	D	V	
2	H	A	V	
3	V	A	V	
4	H	D	H	
5	V	D	H	

The size of the initial instructions list would be exponentially large.

Single-particle experiments cannot rule out the possibility that nature follows inherent properties or inherent instruction tables.

The Bell Inequality -
 Does classical common-sense theory describe the world correctly?

"Spooky"

Correlations in Classical Probability

http://en.wikipedia.org/wiki/Correlation and dependence
"Correlation refers to any ... statistical relationships involving dependence. ... A correlation between age and height in children .
... A correlation can be taken as evidence for a possible causal relationship, but cannot indicate what the causal relationship, if any, might be."

Center for Quantum Networks NSF-ERC

A source emits correlated (entangled) pairs of photons

A source emits correlated (entangled) pairs of photons

Requires a lengthy list of possible correlations, depending on all possible measurement combinations.

Even if you could make such a predictive list, could this describe successfully the observed statistics of outcomes?

NO!
The idea of inherent properties or instructions fails. Proof on next slides.

Proof of the (classical) Bell Inequality

Given these Assumptions:

1. After the photons leave the common source, their inherent properties or instructions exist and don't change later. (Realism)
2. Causal effects cannot travel faster than light. (Causal Locality)
3. Alice and Bob are able to make independent choices about what measurement* each will make on each of their observed photons. (Measurement independence or 'Free Will')

Experiments can be carried out to test the predicted limit. (Bell Tests)

* choice of polarizer angles

Centerfor Quantum Networks NSF-ERC

Averages of Products Quantify Correlations

e.g. Two dancers
arm up arm down $\operatorname{Avg}(\mathrm{Bc})=0$

$$
=+1=-1
$$

Average of Ac
Ave $(A c)=0$
Ave(Ac)=0

Run	Alice c	Bob c	Ac \times Bc
1	+1	-1	-1
2	-1	+1	-1
3	+1	-1	-1
4	-1	-1	+1
5	+1	-1	-1
6	-1	-1	+1
7	1	+1	1
8	+1	+1	+1
9	-1	+1	-1
10	+1	+1	+1
11	+1	-1	-1

Average of Product
Ave(Ac x Bc)=0
correlation $=0$
Define the correlation of two lists as the average of the products of the corresponding list entries.

Perfectly correlated

$\operatorname{Avg}(B c)=0$
Average of Ac
Ave(Ac)=0
$\operatorname{Ave}(A c \times B c)=1$
correlation = 1

Run	Alice c	Bob c	Ac \times Bc
1	+1	+1	+1
2	+1	+1	+1
3	+1	+1	+1
4	-1	-1	+1
5	+1	+1	+1
6	-1	-1	+1
7	-1	-1	+1
8	+1	+1	+1
9	-1	-1	+1
10	+1	+1	+1
11	+1	+1	+1

What if each 'object' has TWO properties that can be observed?

arm up
$=+1$
arm down
$=-1$

Two Dancers perform in separate halls,
one observed by Alice

(leg) $\mathrm{AL}=+1$ or -1 and
(arm) $A A=+1$ or -1

(leg) $\mathrm{BL}=+1$ or -1 and
(arm) $B A=+1$ or -1
 can actually be done on each single object.

Examples later

If the choices of quantity to be measured are chosen randomly ('fair' sampling)...

If the choices of quantity to be measured are NOT chosen randomly

 ('rigged' sampling)...| We could have: | Alice sees Arm | Alice
 sees
 Leg | Bob
 sees
 Arm | Bob
 sees
 Leg | | Prod | | Ave Q $+$ | $\begin{aligned} & \text { Ave } A A \times B A+\text { Ave } A A \times \\ & e ~ A L \times B A-A v e ~ A L \times B L \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | AA | AL | BA | BL AAxBA | | AAxBL | ALxBA | ALxBL | |
| | | 1 | | -1 | | | | -1 | |
| | 1 | | 1 | 1 | | | | | |
| | 1 | | | 1 | | 1 | | | |
| | | 1 | 1 | | | | 1 | N | N-POLL QUESTION |
| | | 1 | | -1 | | | | -1 | |
| | 1 | | 1 | 1 | | | | | In this examole |
| | 1 | | | 1 | | 1 | | | |
| | | 1 | 1 | | | | 1 | | |
| | | 1 | | -1 | | | | -1 | What is the |
| | 1 | | 1 | 1 | | | | | |
| | 1 | | | 1 | | 1 | | | average of Q? |
| | | 1 | 1 | | | | 1 | | |
| | | 1 | | -1 | | | | -1 | |
| | 1 | | 1 | 1 | | | | | |
| | 1 | | | 1 | | 1 | | | A: -1 |
| | | 1 | 1 | | | | 1 | | B. +1 |
| | | 1 | | -1 | | | | -1 | B: +1 |
| | 1 | | 1 | 1 | | | | | C : 0 |
| | 1 | | | 1 | | 1 | | | - 0 |
| | | 1 | 1 | | | | 1 | | D: 4 |
| | | 1 | | -1 | | | | -1 | |
| | 1 | | 1 | 1 | | | | | |
| | 1 | | | 1 | | 1 | | | |
| | | 1 | 1 | | | | 1 | | |
| | | | | Averages: | 1 | 1 | 1 | $1 \quad-1$ | |

For any data set $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$

$$
Q=W \times Y+W \times Z+X \times Y-X \times Z
$$

Ave $Q=$ Ave $W \times Y+$ Ave $W \times Z+$ Ave $X \times Y-$ Ave $X \times Z$

Bell's Inequality

> Under the assumptions of inherent
> properties or instructions, and fair sampling of measurement settings, No
> matter what state is prepared,
> and "no conspiracies" or "rigging", the Average(Q) cannot be greater than 2

John Bell

$$
\text { Average(Q) } \leqslant 2
$$

Testing classical assumptions and logic

Under the Assumptions of:

- Realism
- Causal Locality
- Fair Random Sampling and Measurement independence or 'Free Will'

Correlations in Photon Polarization Experiments

Two photons are emitted from a common source. They might have correlated behavior. Can Alice and Bob do a Bell test?

POLL QUESTION 12

For a given single photon, can you measure whether it is V or H and also measure whether it is D or A ?

A: Yes, send it through a series of two polarizers
B: No, the first polarizer changes its state
C : Yes for classical light, no for quantum light
D: I'm not sure

Two photons are emitted from a common source. They might have correlated behavior.

"Bob" Nobel prizewinning Bob Dylan

Do you expect correlations between Bob's and Alice's measurement outcomes?

Consider a quantum state where the H / V-properties show no correlation: When Alice's shows V, Bob's shows H or V equally

Now Consider a new state preparer John Bell who makes the H/V properties have perfect anti-correlation:
when Alice's shows V, Bob's shows H
Alice's $\begin{aligned} & \text { outcome } \\ & \text { called } W \\ & W \\ & W \\ & \text { or } \\ & +1\end{aligned}$

The outcomes for
Alice and Bob separately still appear perfectly random (mean value $=0$)

Inherent-property table for Alice's and Bob's electrons Alice H/V Bob H/V

Run	Alice W	Bob Y
1	+1	-1
2	+1	-1
3	+1	-1
4	-1	+1
5	+1	-1
6	-1	+1
7	-1	+1
8	+1	-1
9	-1	+1
10	+1	-1
11	-1	+1
12	U	D

On a given run, Alice and Bob can measure only one property each, of their choice

Alice will randomly switch between $\mathbf{0}$ and
45 degree schemes.

$+1$
define: Ave $Q=$ Ave $W \times Y^{\prime}+$ Ave $W \times Z^{\prime}+$ Ave $X \times Y^{\prime}-$ Ave $X \times Z^{\prime}$

Alice $\mathrm{H} / \mathrm{V}=\mathrm{W}$
Bob $H^{\prime} / V^{\prime}=Y^{\prime}$
Alice $\mathrm{D} / \mathrm{A}=\mathrm{X}$
Bob $D^{\prime} / A^{\prime}=Z^{\prime}$

Ave $Q=$ Ave $W \times Y^{\prime}+$ Ave $W \times Z^{\prime}+$ Ave $X \times Y^{\prime}-$ Ave $X \times Z^{\prime}$

One might think:
Bell's Classical Inequality should hold for photon polarization
Under the assumptions of inherent properties or instructions, No matter what state is prepared,
and "no conspiracies" or "rigging", the Average(Q) cannot be greater than 2

pre-determined measurement outcomes

Bell-Test Experiments were carried out by a few groups: John Clauser in 1974. Alain Aspect 1982

Bell-Test Experiments were carried out by a few groups: John Clauser in 1974. Alain Aspect 1982

2015-2017 UPDATE - Closing three possible "logical loopholes":

1. Maybe there is some unknown phenomenon that can send information between Alice's and Bob's setups, allowing a hidden coordination or 'conspiracy' unknown to physics.

Closing the loophole: Separate the two labs by a large distance and switch the measurement settings after the photons have departed from the source. (Light travels at 1 foot per ns.)
2. Maybe the detectors, which have limited detection efficiency (e.g. 80\%), fail to detect photons under some 'conspiracy' scheme, selecting only those events that lead to 'rigged' results.

Closing the loophole: Use detectors with near 100\% detection efficiency.
3. Maybe the experimenters' (or their computers') choices of measurement settings were being controlled by some external agent.

Closing the loophole: Switch the analyzer settings after the particles left the source in the experiment by using the random polarizations of photons from two distant stars. The starlight was created over 500 years ago, well before quantum theory was even invented!

In 2015 to 2017 all these experiments were done and they still observed $\mathrm{Q}=2.8$, violating the classical prediction the Bell Inequality $(\mathrm{Q}<2)$.
> "Strictly speaking the experiments show that the combination of realism, causal locality, and measurement independence can't exist!"

"Strictly speaking the experiments show that the combination of realism, causal locality, and measurement independence can't exist!"

The Bell Inequality is based on common sense.
But careful scientific reasoning with experiments can override common sense.

QUANTVMENTANGLEMENT

Quantum theory provides an explanation for correlations that works! The state description obeys local causality, but must be "global." (Holistic - the whole does not equal the sum of parts)

A pair of photons can be prepared in the entangled Bell state $\psi=(\mathrm{V}) \&(\mathrm{H})+(-\mathrm{H}) \&(\mathrm{~V})$, and quantum theory predicts exactly the correlations observed in the Bell Test experiments.

The experiments validate quantum theory and the fact that entangled states are an actual ('real') aspect of nature, which suggests that quantum states allow information processing and communication beyond what is possible with classical states.

NEXT: Bell-State Measurements provide the basis of Quantum Network operations.

Centerfor Quantum
Networks NSF-ERC

5 minute break

The Physics Behind the Quantum Internet

PART 1: Quantum information science
The Center for Quantum Networks
The National Quantum Initative What is information?
Bits and qubits
Superposition and entanglement

PART 2: Encoding and transmitting quantum information
Communication systems
Distributing Entangled states (e.g.. in Space)
Ways of encoding qubits
Ways of encoding qubits in photons (Flying qubits) Quantum state teleportation
Space-based quantum networks

PART 3: Bell State measurements
Photon polarization revisited Quantum measurement - Born's Rule Correlations and the Bell inequality Bell-Test experiments

PART 4: The Quantum Internet

Application \#1: Quantum Cryptography Bell-State Creating and Measuring Quantum memories
Application \#2: Memory-Assisted Teleportation Entanglement Swapping with Quantum Memories Quantum repeater networks
What could a quantum Network do?
Perspectives and misconceptions

The Quantum Internet

What is the Q Internet?

1. A network to distribute quantum entanglement to any two or more locations regardless of distance 2. A network that is interoperable (agnostic to the particular hardware used at each location)
2. A network with a 'classical' control system to coordinate its operations

Quantum Cryptography

The Information Privacy Problem
Message sender

Alice

Eve Message recipient

Bob

Alice and Bob want to share a secret message.
But the message can be intercepted!
Alice and Bob need to SHARE a "KEY" for encrytping and decrypting.

I Alice: Encode message into binary (bits) using ASCII 2 Alice: Encrypt coded message using a Shared Key 3 Alice: Transmit
4 Bob: Receive
5 Bob: Decrypt using same key
6 Bob: Convert received ASCII back to message
To ensure total secrecy: Use a different key number for each bit in the message
message: "240" convert to ASCII -> 11110000

Key Rules:
$\mathbf{1}$ (flip $0 \rightarrow 1,1 \rightarrow 0$)
$\mathbf{0}$ (leave unchanged)

QUESTION
What is the
encrypted
message?

30 seconds

I Alice: Encode message into binary (bits) using ASCII
2 Alice: Encrypt coded message using a Shared Key
3 Alice: Transmit
4 Bob: Receive
5 Bob: Decrypt using same key
6 Bob: Convert received ASCII back to message

```
Key Rules:
1(flip 0->1, 1->0)
0 (leave unchanged)
```

QUESTION What is the
original
message?

30 seconds

Center for Quantum Networks NSF-ERC

Quantum Cryptography

Alice and Bob can generate a secret shared encyption key by making Bell State Measurements on entangled pairs

The source generates Bell States, whose measurement outcomes are quantum correlated in a manner not possible in classical physics

The source and measurement devices can even be somewhat faulty. If Alice and Bob are able to verify that the measurement outcome statistics violate the Bell inequality, then they can use the outcome data to generate a shared key.

Quantum Cryptography

Quantum Key Distribution (QKD)

Center for Quantum Networks NSF-ERC

Creating Bell States

Consider an Entangling Device that operates according to the Rules:

1. If the B photon is H -pol, the A photon's polarization is unchanged.
2. If the B photon is V-pol, the A photon's polarization is "rotated" by minus 90 degrees.
3. The B photon's polarization is unchanged in either case.

We can denote polarization states using arrows:
$(\mathrm{H})=(\boldsymbol{\rightarrow})$
$(\mathrm{V})=(\boldsymbol{\uparrow})$
$(\mathrm{D})=(\boldsymbol{\pi})$

Then:
$(\boldsymbol{\lambda})=(\boldsymbol{\rightarrow})+(\boldsymbol{N})$
$(\boldsymbol{\pi})=(\boldsymbol{\rightarrow})+(\boldsymbol{N})$
$(\mathrm{A})=(\mathbf{N})$

1. If the B photon is H -pol, the A photon's polarization is unchanged.
2. If the B photon is V-pol, the A photon's polarization is "rotated" by minus 90 degrees.
3. The B photon's polarization is unchanged in either case.

4. If the B photon is H-pol, the A photon's polarization is unchanged.
5. If the B photon is V-pol, the A photon's polarization is "rotated" by minus 90 degrees.
6. The B photon's polarization is unchanged in either case.

Entangling

Device

POLL QUESTION 13

$\qquad D=H+V$
Input at B the superposition state $(\boldsymbol{\lambda})_{B}=(\boldsymbol{\rightarrow})_{B}+(\boldsymbol{\uparrow})_{B}$

Recall the Rules:

1. If the B photon is H -pol, the A photon's polarization is unchanged.
2. If the B photon is V-pol, the A photon's polarization is "rotated" by minus 90 degrees.
3. The B photon's polarization is unchanged in either case.

What is the Composite Output State? The device ís a CNOT Gate
$\mathrm{A}:(\boldsymbol{\uparrow})_{A} \&(\boldsymbol{\rightarrow})_{\mathrm{B}}$
B: $(\boldsymbol{\leftarrow})_{A} \&(\boldsymbol{\uparrow})_{B}$
$C:(\boldsymbol{T})_{A} \&(\boldsymbol{\rightarrow})_{B}+(\boldsymbol{\leftarrow})_{A} \&(\boldsymbol{T})_{B}$
D: I don't know

PROOF: INPUT STATE IS:
$(\boldsymbol{\uparrow})_{A} \&(\boldsymbol{\pi})_{B} \quad$ which is same as:
$(\boldsymbol{\uparrow})_{A} \&(\rightarrow)_{B}+(\boldsymbol{\uparrow})_{A} \&(\boldsymbol{\uparrow})_{B}$
$(\boldsymbol{\uparrow})_{A} \&(\rightarrow)_{B}+(\boldsymbol{\leftarrow})_{A} \&(\boldsymbol{\uparrow})_{B}$ which becomes:

Center for Quantum Networks NSF-ERC
 Bell State Disentangler

To verify you have a particular Bell State prepared, use a Bell State Disentangler: Send the photon pair from right to left to undo the entangling operation.

$(\boldsymbol{\uparrow})_{A} \&(\boldsymbol{\rightarrow})_{B}+(\boldsymbol{\uparrow})_{A} \&(\boldsymbol{\uparrow})_{B}$
same as
$(\boldsymbol{\uparrow})_{A} \&[(\boldsymbol{\rightarrow})+(\boldsymbol{\uparrow})]_{B}$
same as $(\boldsymbol{\uparrow})_{A} \&(\boldsymbol{\pi})_{B}$
$(\mathrm{V})_{A} \&(\mathrm{D})_{B}$

Example:
Want to verify you have this particular Bell State

If the B photon is V-pol, the A photon's polarization is "rotated" by plus 90 degrees.

Center for Quantum Networks NSF-ERC

Bell State Measurement (BSM)

Measuring Bell States

A Bell State Measurement is a joint measurement of two qubits that determines which of the four Bell states the two qubits were prepared in. (An example of the Joint Measurement we discussed for State Teleportation)

OUTCOME:

The pair was prepared in: $\mathrm{BS}_{1}=(\mathrm{H} \& \mathrm{H})+(\mathrm{V} \& \mathrm{~V})$

Memory and Repeater-Assisted State Teleportation
Quantum Memories and Repeaters are Needed

Center for Quantum Networks NSF-ERC

Why are Quantum Memories and Repeaters Needed?

Light is lost as it travels in a fiber by absorption and scattering.

core

cladding

For telecom (Near-IR) wavelength $=1550 \mathrm{~nm}$, typical loss rate $=0.5 \mathrm{~dB} / \mathrm{km}$

The decrease is exponential with length:
after 20 km the power is decreased by a factor $=10 \mathrm{~dB}$, which is a factor of 10 after 40 km the power is decreased by a factor $=20 \mathrm{~dB}$, which is a factor of 100 after 60 km the power is decreased by a factor $=30 \mathrm{~dB}$, which is a factor of 1,000 after 80 km the power is decreased by a factor $=40 \mathrm{~dB}$, which is a factor of 10,000

Quantum Memories

An electron in an atom can store
a qubit value in its spin state
energy
is
quantized

" 1
" 0

Quantum Memories

$$
\text { Resulting state of the two Memories }=(\mathbf{s} \& g)+(g \& s)
$$

A Photon Polarization State is stored in the entangled state of the Memories

How to verify entanglement has been created between the memories?

If both detectors register no photon, we know entanglement has been created between the memories.

The probability of success is denoted p .

Representation of Entanglement Swapping

memory \#1 memory \#2
memory \#3 memory \#4

memory \#1
memory \#4

FINAL

Center for Quantum Networks NSF-ERC

Creating a Chain Network of Entangled Memories

INITIAL
ATTEMPTS
TO
ENTANGLE

REPEAT
TILL
SUCCESS

BELL STATE MEASUREMENTS

(Entanglement Swaps)
FINAL

Fig. 2 Schematic of a square-grid topology. The blue circles represent repeater stations and the red circles represent quantum memories. Every cycle (time slot) of the protocol consists of two phases. a In the first (external) phase, entanglement is attempted between neighboring repeaters along all edges, each of which succeed with probability p (dashed lines). \mathbf{b} In the second (internal) phase, entanglement swaps are attempted within each repeater node based on the successes and failures of the neighboring links in the first phase-with the objective of creating an unbroken end-to-end connection between Alice and Bob. Each of these internal connections succeed with probability q. Memories can hold qubits for $T \geq 1$ time slots

Modeling by the Center for Quantum Networks:

Pant et al, npj Quantum Information (2019)5:25; https://doi.org/10.1038/s41534-019-0139-x NSF-ERC

What could a quantum Network do?

A global quantum network would allow the distribution of quantum states and quantum entanglement, enabling:

1. quantum key distribution (secure encryption)
2. blind/private quantum computing (without the computer recording)
3. private database queries (without the computer recording)
4. global timekeeping and synchronization
5. improved sensing (magnetic, electric and gravitational fields, medical, bio research, mineral exploration, atomic clocks, telescopes, very long baseline interferometric telescopes)
6. physics tests (e.g. quantum non-locality and quantum gravity)
7. distributed quantum computing (combining power of Q computers)

Christoph Simon, "Towards a global quantum network." Nature Photonics 11, no. 11 (2017): 678-680.
Mihir Pant, et al, Routing entanglement in the quantum internet,
npj Quantum Information (2019) $5: 25$; https://doi.org/10.1038/541534-019-ol39-x

COMMON MISCONCEPTIONS

What will the Quantum Internet NOT do?

1. NOT: Faster than light communication
2. NOT: Causation across a distance
3. NOT greatly increase data rate (Mbytes per second) compared to classical networks

For 20 hour series of lectures, see
Quantum Physics for Everyone: Lectures 1 through 12
by MG Raymer
Harvard Center for Integrated Quantum Materials

Link to the course videos on youtube:
https://youtube.com/playlist?list=PLoCLfRiRFyPCTRxyINPShN-Z8RFpTKRRo
search YouTube for Quantum Physics for Everyone

Course Evaluation Survey

We value your feedback on all aspects of this short course. Please go to the link provided in the Zoom Chat or in the email you will soon receive to give your opinions of what worked and what could be improved.

CQN Winter School on Quantum Networks

Funded by National Science Foundation Grant \#1941583

NALU ARIZONA UNIVERSITY

