
Funded by National Science Foundation Grant #1941583 

Information in a Photon
Instructor: Saikat Guha
– University of Arizona

Co-Instructor: Christos Gagatsos
— University of Arizona

CQN Winter School on Quantum Networks
January 5, 2023

The development of this short course was supported primarily by the 
Engineering Research Center (ERC) Program of the National Science 
Foundation under NSF Cooperative Agreement No. 1941583. Any 
opinions, findings and conclusions or recommendations expressed in 
our course material are those of the instructors and do not necessarily 
reflect those of the National Science Foundation. 



Quantum information processing
• Communications

– Deep-space lasercom
– Quantum security: QKD, covert communications

• Computing
– Factoring [breaks RSA, Diffie-Hellman]
– Search and optimization
– Blind quantum computing
– Multiparty privacy-preserving computations
– Simulations of complex quantum systems

• Sensing
– Passive imaging (astronomy, microscopy, SDA)
– Active photonic sensors (RF photonic antennas, fiber-optic gyroscopes, 

beam deflectometers, surface topography, endoscopy, lidars, …)
– Gravitational wave sensors (LIGO – squeezed light)
– Magnetic field sensing (Neuronal imaging, chip testing)



Photonic quantum information processing

• Wherever light gets used in encoding, extracting, 
carrying or processing information 
[communications, sensing, imaging, computing, 
simulations, …], what is the best performance 
permissible by the laws of quantum physics? 



Quantum optics meets Information theory

Quantum optics – quantum theory of light and its 
interaction with matter
• Non-linear optics
• Atomic systems
• Many-body physics

Information theory – quantifying “information” in the 
context of communications, sensing and computing
• Detection theory 
• Estimation theory 
• Data compression
• Channel coding



Course objective

• Introduction to some of the mathematical tools 
necessary to understand the quantum representation of 
classical laser light, and certain non-classical states of 
light, including single-photon and multi-photon states 
and squeezed states of light 

• Using these tools to understand how to manipulate 
(classical and quantum) light using interference

• Using basic tools from quantum information theory to 
uncover applications of quantum techniques (sources of 
light, ways to manipulate light, and detection schemes) 
for improved performance in encoding, transmission 
and processing of information



Course plan

• Module 1: Quantum limits of information encoded 
in laser light [Saikat Guha]

• Module 2: Quantum information advantage arising 
from interfering photons [Christos Gagatsos]

• Multiple choice questions interspersed through the 
course, to be answered through zoom polls

• Post-lecture survey



Module 1: Quantum limits of information encoded in laser light



Digital (classical) communications

Information source

(analog signal)

Transduction

Electrical (voltage 
or current) signal

Sampling Quantization
1100 1110 10000010 …

Error correction 
encoder

01110
00101
10101
10101
00111
11001
0011…

Code rate R = k/n

k=3 n=6

Noisy 
channelModulation

Modulated codewords: Laser 
pulses (binary phase shift keying 
modulation format shown)

Noisy / attenuated 
modulated codeword Receiver

Optical 
process.

Detec
tion

Electrical 
signal 
process.

01100
00111
11101
10101
01010
11001
0111…

Error correction 
decoder

1100 1110 10000010 …

Interpolation Filter Transduction (analog signal + tolerable noise)

(in some cases, 
information is already 
digitized)



“Quantum limit” of an optical receiver

Codeword 1

Codeword 2

Codeword 3

Codeword 4

Codeword 5

Codeword 6

Codeword 7

Codeword 8

Mean photon number per pulse,
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Quantum limit of 
minimum error 
probability

Best achievable 
using ANY classical 
receiver

Silva, SG, Dutton, Phys. Rev. A 87, 052320 (2013)
Rengaswamy, Seshadreesan, SG, Pfister, Nature npj Quantum Inf 7, 97 (2021)
Delaney, Seshadreesan, MacCormack, Galda, SG, Narang, Phys. Rev. A 106, 032613 (2022)

Optical receiver is a “mini quantum computer”



Random process describing Discrete 
events in continuous time and/or space

• Where such random processes might occur
– Spiking patterns in neurons, bank teller queue, photon detection, …

• Arrival process,       ; counting process,
– I(t): random arrivals (each arrival denoted by a delta function)
– N(t): number of occurrences (arrivals) before time t, 

Arrival rate:

Constant rate:

Mean # arrivals:



Poisson point process (PPP)

Arrival rate:

Constant rate:

Mean # arrivals:

1. Probability of an arrival in a tiny time step is equal to the rate of the 
arrival process (at that time) times the size of the time increment

2. Probabilities of arrivals in disjoint time steps are statistically independent



Probability distribution of inter-arrival time

Probability distribution of the time of first arrival,

Arrival rate:

Time of first arrival

Probability distribution of the total number of arrivals,



Inter-arrival times and number of arrivals

Probability of one arrival in a        interval, 

Let us denote by t, the time of first arrival;

c.d.f.,

Probability distribution of the total number of arrivals K,

p.d.f.,



Distribution of the number of arrivals

Problem 1: What is the distribution of the total number of arrivals K? (k=0, 1, 2, …)

A: 
B:
C:
D: I do not know.

Probability distribution of the total number of arrivals K,



• Quasi-mono-chromatic laser light pulse: in √
(photons/m2-sec) units

• Mean photon number, 

A pulse of laser light

Spatial mode Temporal mode

Spatial and temporal 
dependence may not be 
factorable in general

Re

Im

Phase space picture: once we identify a 
spatio-temporal-polarization mode, a complex 
number describes the state of the laser pulse

No detector can accurately 
measure the field

“coherent state”



Mode (space / time / polarization)

• An optical mode is the “shape” of a confined EM 
field in space, time and polarization (the three 
independent degrees of freedom of the photon)

• Time & Frequency are the same degree of freedom 
(related by Fourier transform)

We will take a 
mode to be 
normalized



Orthogonal modes

• Two modes               and               are orthogonal if,

– If              , the two modes will be orthogonal regardless of their spatial 
and temporal shapes

– When            , we will drop the polarization subscript 
– When we say two “temporal modes” s1(t) and s2(t) are orthogonal, we 

will implicitly assume the mode functions being referred to have the 
same spatial modes and polarization

Mode 
sorter



Maximum number of orthogonal modes
• Consider temporal modes,                               

• …and their Fourier transforms,

• How many (K) orthogonal modes            can be “fit 
into” a time-bandwidth product of T x W? i.e.,
–                                            , and   

– While ensuring orthogonality:

• Answer:                  , and these optimal mode 
functions are “Prolate Spheroidal” functions

• All of above holds for spatial modes as well
Slepian, D. Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extension to many dimensions; 
Generalized prolate spheroidal functions Bell Syst. Tech. J., vol. 43, pp. 3009-3057, Nov. 1964.



Some intuition: choices of WT modes
Each mode fills up the same BW, but 
different time extents within [0, T)

Each mode fills up the same time [0, T), but 
different freq extents within [-W/2, W/2]



Coherent state of this mode:

Example: flat-top temporal mode

Re

Im

Phase-space representation:



Photon detection on a coherent state of 
the flat-top mode (a “square pulse”)
• PPP of constant rate

Re

Im

Mean photon number in pulse,



On-off keying (OOK) modulation

Probability of 0 photon arrivals if H2 is actually 
true (N photon pulse incident on detector)

Probability of > 0 photon arrivals if H1 is actually 
true (N = 0 photon pulse incident on detector)

Recall the Poisson 
distribution, evaluate at k=0:

assume equal priors: “Maximum Likelihood” decision rule: 
k = 0 click 🡪 say H1
k > 0 clicks 🡪 say H2 Waiting for the 

first click suffices



Binary phase shift keying (BPSK)

with,

Re

Im

Mean photon number in the pulse 
is the same for either state:



Interference (passive linear optics)
• Beamsplitter

• Examples

Transmissivity,
Phase,

Destructive interference Pure phase Nulling (displacement)



Mach-Zehnder interferometer (MZI)

pure phase pure phase

50-50 beamsplitter 50-50 beamsplitter



Arbitrary N-mode linear optical unitary
• Any N-by-N unitary U can be realized with M = N(N-1)/2 MZIs. 

Therefore, one needs tuning N(N-1) phases to realize any U

Reck et al., PRL 73, 1 (1994)

Clements et al., Optica 3 (12), 1460-1465 (2016)



On-off keying (OOK), Kennedy receiver

Im

Re



P(error) for the Kennedy receiver

• Let us use the same decision rule
– click = “on”, no-click = “off”

Optimize (minimize) this over the choice of
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Discriminating BPSK pulses

• Kennedy (requires perfect amplitude and phase reference)
– Exact nulling

– Optimized nulling
R. Kennedy, MIT Research Laboratory for Electronics, Quarterly Progress Report 110, 219 – 225 (1972) 

Takeoka and Sasaki, Phys. Rev. A 78, 022320 (2008)

(exact nulling, 
suboptimal)

Can we build a 
receiver for BPSK 
that does NOT 
require an 
amplitude 
reference?



Homodyne detection

Assume for now that both                are real, and

Balanced detector



Homodyne detection: output distribution

Pick the scaling constant S such that the mean 

Problem 2: What is the distribution of Y?

A: 
B:
C:
D: I do not know.



Break [5 minutes]



Homodyne detection (continued)

• Local Oscillator (LO) has a phase offset with the input pulse 

Show that:

i.e.,

Re

Im



Homodyne detection

Gaussian probability distribution

Black box 
description:



Unambiguous BPSK state discrimination

or
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erasure

If forced to make a decision, i.e. by mapping the erasure to one possible input, then the 
average probability of error (assume equal priors),



Dual homodyne detection (heterodyne)

Recall black 
box description:

We can show:

Define:

Re

Im
Q-ary PSK, Q=4



BPSK discrimination performance
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Quantum states and measurements

• Von Neumann (projective) measurement on a state is 
described by a set of unit-norm orthonormal vectors

• If the state      is measured, the k-th outcome appears 
with probability,

• If two states     and       are orthogonal, i.e., 
measurement                                      achieves

• A (pure) state is described by a unit-norm column 
vector      



Number (Fock) state of a mode

If we do ideal direct detection of mode         , the total number of 
photons K is a Poisson random variable of mean N

Mode         , a quantum system, is excited in a coherent state

Mode         , a quantum system, is excited in a number state

If we do ideal direct detection of mode         , the total number of 
photons K = n (exactly so; K is not a random variable).

A mode of ideal laser light is in a coherent state. Number (Fock) state 
of a given mode is VERY hard to produce experimentally

There are infinitely many other types of “states” of the mode        . 
Coherent state and Fock state are just two example class of states

Fock states of a mode are special: they form an orthonormal 
basis that spans any general quantum state        of that mode

and



Coherent state as a quantum state

Ideal photon detection is a von Neumann quantum measurement described 
by projectors,

Ideal direct detection on a coherent state      produces outcome “n” 

(i.e., n “clicks”) with probability,

Poisson detection statistics in a laser pulse is a result of the projection of the 
quantum state of the laser pulse—a coherent state–on to one of the Fock states



Quantum description of light

• Complete description of an optical field is the quantum 
state of a set of mutually-orthogonal modes

• The most general (pure) state of a mode is an arbitrary 
superposition of number states of that mode,            
where                   , and

• Ideal direct detection:                      -- number states
• Examples of pure state of a mode:

– Coherent state

– Number (Fock) state,
– Cat state:

•                                          ensures                        , and 
•                            (so, the two cat states can be used to encode a qubit)  



Photon detection on cat states

Not Poisson distribution 



Entangled states

• Product state of two modes can be written as:              
    with,                       and                                        

– Tensor product: Each state “lives in its own Hilbert space”
– Example of product state of 2 modes:

• Two coherent states,
• Coherent state and a Fock state,
• Two cat states,                 , where

• Entangled state of two modes cannot be written 
as             . A two-mode entangled state is:

– Example (N00N state):



Binary state discrimination

– Assume equal priors:
Consider a von Neumann 
projective measurement:

Inner product between 
the two states

This measurement 
happens to be the one 
that minimizes the 
average error probability



Minimum probability of error for 
binary state discrimination

Problem 3: What is the minimum probability of error in discriminating         and          
given their inner product,                        ? (assume     is real)

A: 
B:
C:
D: I do not know.



MPE decision among M pure states 

• M-ary ensemble
– Pairwise inner products (Gram matrix),

• Yuen-Kennedy-Lax (YKL) [1975] conditions for MPE
– Projective measurement,
– Relative inner products (aligning measurement vectors in 

the M-dimensional space spanned by the M pure states):

– YKL conditions for minimum average probability of error
M(M+1)/2 non-linear 
simultaneous 
equations: solve for 

(Check for uniqueness of solution)

(1)

(2)

(3)

Sometimes 
referred to 
as 
“Helstrom 
bound”



BPSK – minimum probability of error

• The inner product of two coherent states       and     ,

• Discriminating BPSK coherent states,
– Inner product,

– OOK (             ), 

This calculation of minimum error probability using the quantum picture 
was easy. How do we design a receiver that will achieve this?

Re

Im



Dolinar, MIT RLE Quarterly Progress Report, 1973

AWG
Detector PPP rate:

versus

Dolinar’s receiver: optimal binary detection

Toggles between applying u-(t) and u+(t) 
at each detector click, and switch 

receiver’s belief of which hypothesis is 
true at each click arrival



Slicing interpretation of Dolinar’s receiver



Slicing interpretation of Kennedy’s receiver 
(exact nulling version)



BPSK discrimination performance
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Dolinar receiver is 
factor of 2 (or, 3 dB) 
better than homodyne 
in the error exponent



Bondurant’s generalization of 
exact-nulling Kennedy receiver to Q-ary 
PSK

Re

Im

H1

H2

H3

H4

Null H1

Click – rule out H1

Null H1 Null H2

Click – rule out H2

Null H2 Null H3

Q-ary PSK, 
Q=4 shown



Optimized nulling Bondurant receiver: 
the equivalent of Dolinar for Q-ary PSK

C. R. Müller and C. Marquardt, New J. Phys. 17 032003 (2015)

The “quantum” limit of minimum probability of error cannot be attained by this 
Dolinar-like receiver strategy. A structured receiver to attain this minimum error 
probability remains an open problem even for 3 given states of a laser pulse!

They analyze performance of the receiver with all three detector imperfections we discussed



Ternary discrimination example

• Consider
– with      real, equal priors,                ; what 

measurement would you use to distinguish these?
• Gram matrix,

• Measurement matrix,

State geometry
Measurement geometry



Minimum probability of error

• YKL conditions

– Solution:

• Substitute these into                     , and solve using Newton’s 
method for the value of d, s.t. f(d) = 0. Evaluate average min

   probability of error,                                      and plot as fn. of N



Comparison of MPE with Homodyne

• Evaluate the error probability attained by an ideal 
homodyne detection receiver:
– If               , pick        , elseif                , pick    , else pick
– Show that,                               . Let us plot this.

• Asymptotic limit (N large)
– For N large,                          , 
whereas

• Kennedy like receiver
(sequential-nulling) Kennedy receiver
outperforms homodyne, and attains 
the optimal exponent, exp(-N)

Plot courtesy: Quantum Detection and Estimation Theory, Carl Helstrom, 1976



Another M-ary example: 
pulse position modulation (PPM)

Direct detection

Problem 4: What is the probability of error in discriminating the M-ary PPM 
codewords achieved by ideal direct (photon) detection on each pulse slot?

A: 
B:
C:
D: I do not know.



Another M-ary example: 
pulse position modulation (PPM)

Direct detection

(symmetry postulate)

YKL conditions for minimum error probability

Quantum MPE limit (YKL)

SG, Habif, Takeoka, J. Mod. Optics, Vol. 58, Nos. 3–4, 10–20, 257–265, 2011

Conditional nulling receiver

Dolinar, MIT Ph.D. Thesis 1976, TDA Progress Report, 42-72, 1982

1

Null pulse-1 
and DD

2
Null pulse-2 
and DD

Null pulse-3 
and DD

1
DD pulse 
2, 3, 41

3
2

1

k k
2

2
DD pulse 3, 4 kk

4
3

3
3

DD pulse 4
44



PPM demodulation using the 
Conditional Pulse Nulling (CPN) receiver

1
Null pulse-1 
and DD 2

Null pulse-2 
and DD

Null pulse-3 
and DD

1
DD pulse 2, 3, 
41

3
2

1
k k

2
2

DD pulse 3, 4 kk

4
3

3
3

DD pulse 4 44

SPD

Decision
Nulling 

PPM Pulses
Decoder

Nulling “Decision Tree”

Direct 
detection
Quantum limit of 
minimum Pe (YKL)

Conditional 
nulling

Chen, Habif, Dutton, Lazarus and SG, Nature Photonics 6, 374-379 (2012)

YKL

Receiver design that exactly attains the quantum limit is not known.



Universal quantum processing

• We know how to calculate the minimum probability of error 
for discriminating any M coherent states. Yet, we don’t know 
optimal structured receiver designs for M > 2

• The M = 2 case (Dolinar receiver) was special
• So far, we have been playing with linear optics (circuits of 

beamsplitters and phases) and direct (photon) detection. 
These are NOT universal resources

• Adding “squeezing” to our toolbox will make it universal
• We will learn about squeezing in Module 2



Squeezing

• Squeezing is a unitary transformation,

– Homodyne detection results in:
– Direct detection:

Re

Im

Re

Im

BPSK discrimination                     : 
generalization of Kennedy receiver 
(apply displacement and squeezing 
before photon detection)

Takeoka and Sasaki, PRA 2008

Mean photon number

Quantum result: 
cannot be 
described 
semi-classically



General design of an optimal receiver

• Is there a receiver strategy that uses adaptive 
application of squeezing (not just displacement) 
on small slices of the coherent state pulses, and 
photon detection attain arbitrary M-ary MPE 
state discrimination? [Open problem]

• Instead of an all-optical design, what if we can 
map each of the BPSK coherent states to a qubit 
first, i.e., 

– Then use quantum computing on those qubits?



Quantum limited receiver design

Codeword 1

Codeword 2

Codeword 3

Codeword 4

Codeword 5

Codeword 6

Codeword 7

Codeword 8

Mean photon number per pulse,
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Quantum limit of 
minimum error 
probability

Best achievable 
using ANY classical 
receiver

Silva, SG, Dutton, Phys. Rev. A 87, 052320 (2013)
Rengaswamy, Seshadreesan, SG, Pfister, Nature npj Quantum Inf 7, 97 (2021)
Delaney, Seshadreesan, MacCormack, Galda, SG, Narang, Phys. Rev. A 106, 032613 (2022)

Optical receiver is a “mini quantum computer”



Demonstration of quantum advantage



Communication capacity

- Mean photon number 
per received pulse = N
- We can excite each 
pulse in any coherent 
state, 
- How many bits of 
information C(N) can 
be faithfully 
communicated per 
pulse?

bits per 
photon

Bridging the 
remaining gap to 
the Holevo 
capacity requires 
joint-detection 
receivers that use 
quantum effects
Chung, SG, Zheng, 
Phys. Rev. A 96, 
012320 (2017)

SG, Phys. Rev. Lett. 106, 240502 (2011)



Communication capacity

Takeoka, SG, PRA 89, 042309 (2014)

- Mean photon number 
per received pulse = N
- We can excite each 
pulse in any coherent 
state, 
- How many bits of 
information C(N) can 
be faithfully 
communicated per 
pulse?

Shannon capacity: any modulation + 
receiver combination
Holevo capacity: of a given modulation 
(optimum joint detection receiver)
Ultimate Holevo capacity: no restriction 
of modulation or receiver



Module 1: concluding remarks 
• Laser light pulses undergo “wave-like” interference (through 

beamsplitters), much like ripples of water in a pond
• Laser light field cannot be precisely measured
• Detecting photons on a laser light pulse produces a random 

number of “clicks” with a Poisson distribution
• Quantum representation of a laser light pulse is a “coherent state” 

--- this representation helps us quantify “best” receivers (that 
minimize probability of error, for example), even without knowing 
how to build such as optimal receiver

• Just using semiclassical tools (interference in a beamsplitter 
based circuit, and Poisson-noise-limited photon detection), one 
cannot attain the quantum limit of receiver performance

• Optimal receiver designs require “quantum” processing of laser 
light – either all-optically using non-classical transformations of 
light (e.g., using squeezing) or first coupling the laser-light pulses 
into qubits, followed by processing them in a quantum computer



Break [5 minutes]



Module 2: Quantum information advantage 
arising from interfering photons 

Outline:

1. Introduction to very basic quantum mechanics.

2. Beam-splitters: Classical v Quantum Inputs.

3. Gaussian Multiport interferometers.

4. General Gaussian Transformations and application to Gaussian Boson Sampling.



Quantum Systems

 

Essentially, Quantum optics is applied linear algebra.



Quantum Systems

 

 

CV System: We encode information in states of light.
 

 

 

 



Transformation of states
 

 

 

  

  

 
 

 

 

Phase

  Squeezing

  

 

  

 
  

 

  Displacement

  

 
 

  

 



Phase space description

Always a proper probability density 
function when it exists. The states for 
which a proper P function exists are 
classical states.

May not be a proper probability density 
function. Can take negative values.

Q-Function: Always a proper 
probability density function

Characteristic functions



Unitary evolution

 

 

  

 

Gaussian Unitary Operator: Any unitary operator that maps Gaussian states to 
Gaussian states.

 



Two-mode transformation: Beam splitter

Beam splitter

 

 
 

 

 

Two-mode squeezed vacuum
(TMSV)

 

 



Classical and Gaussian Classical and Non-Gaussian

Quantum and Gaussian Quantum and Non-Gaussian

Examples of States Light

 

 

Mixture of coherent states under
 a non-Gaussian PDF:

  

 
 

 

 

 
 

 

 



Gaussian transformations not universal. 
Need any one non-Gaussian unitary

• Phase (1 🡪 1)
–   

• Beam splitter (2 🡪 2)
–   

• Squeezing (1 🡪 1)
–   

• Displacement (1 🡪 1)
–   

• Cubic phase (1 🡪 1)
–   

General N-mode passive 
linear optical transformation

General zero-mean Gaussian 
unitary.

General Gaussian 
transformation

 

 

 

Seth Lloyd and Samuel L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999)

Julien Niset, Jaromír Fiurášek, and Nicolas J. Cerf, Phys. Rev. Lett. 102, 120501 (2009)



Purely Quantum properties

1. Squeezing (Gaussian Quantum resources).
2. Entanglement.
3. Non-Gaussian states and measurements.

• Sensing
• Communications.
• Universal Quantum Computation

Quantum 
enhancement



Example on beam splitter calculations

 

 

 
 

 

 

 
 

 

 

 

 



Example on beam splitter calculations
(cont.)

 

 

 
 

 

 

A coherent state input in a beam splitter cannot produce entanglement: 
The resulting state is a product of two coherent states (while the total mean photon 
number is conserved).

 



More examples on beam splitter 
calculations

 

 

 
 

 
 

 
 

 

 

 

 
 

 
 

 



Problems (7 minutes)

 

 

 
 Problem 1:

 



Problem

 

 

 

  

 

Problem 2:

 



Break [5 minutes]



Introducing multi-mode Gaussian 
interferometers
We have seen that the beam-splitter transforms the annihilation and creation as:
 

 



Multimode Gaussian Unitary evolution

 

  

For example: The beam splitter corresponds to:

 

 

Phase
  



Multimode Gaussian Unitary evolution

 

 

 



Problem

 

 A: No.
B: Yes.
C: Depends on the state we transform.
D: I do not know.



Problem

Problem 4: Let the single mode squeezed vacuum state 

 

 

 



Squeezed states: A quantum resource

With the math you’ve learned you can calculate:

 

 
 

 

Two-mode squeezed vacuum
(TMSV)

 

The TMSV is the maximally entangled two-mode Gaussian state.

 

A more general transformation:

 

 

 
 
 

 

 

 

 

 



The probability of any PNR pattern

 

 

 
 
 

 

 

 
 

 

 

 

 

Andrew J. Pizzimenti, Joseph M. Lukens, Hsuan-Hao Lu, Nicholas A. Peters, Saikat Guha, and Christos 
N. Gagatsos, Phys. Rev. A 104, 062437 (2021)



The probability of any PNR pattern: 
Hafnians

 

Hafnian of matrix F:

The difficult part in calculating he probability of a photon-number pattern, is the term: 

 



Sampling from a distribution

In general, a (classical) computer program that samples from a given distribution would 
scale exponentially with the size of the requested pattern (e.g. photon-number pattern).   
Therefore, we program the Hafnian into a quantum-optical circuit, i.e., a quantum Galton 
board (a.k.a. Gaussian Boson Sampler) that performs the sampling job.

 
 

 
 
 

 

 

 
 

 

 

 

This Photo by Unknown Author is 
licensed under CC BY-SA

This Photo by Unknown Author is 
licensed under CC BY-SA



Hafnians and perfect matchings
Set of objects

 

 

  

 
 

 

 
 

Perfect matching: Connect the objects with a line so that 
any object is used only once (no more than one line can 
start/end from any point).

 

Example: 

  

  
  

  

 

Perfect matching 1

 
 

  

Perfect matching 2

 
 

  

Perfect matching 3



Hafnians and perfect matchings

  

  
  

  

Perfect matching 1

 
 

  

Perfect matching 2

 
 

  

Perfect matching 3

How does the previous example relate to the calculation of the Hafnian?

 

 

 

 



Isserlis’ theorem

 

 

 



Module 2: Concluding remarks

• Quantum states of light can: 
– Possess counter-intuitive properties
– Give quantum advantage

• Necessary tools to manipulate all the different 
protocols:
– Linear algebra.
– Building intuition.



Quantum supremacy (advantage)

• Google, US
– IQP: a random circuit based sampler [53-qubit circuit of depth 20, 

with 430 two-qubit and 1,113 single-qubit gates. Classical simulation 
estimate ~ 10,000 years based on a Schrödinger-Feynman 
simulation that trades off space for time, whereas Sycamore 
processor takes about 200 seconds

• Xanadu, Canada
– Gaussian Boson Sampling: 216 squeezed modes entangled with 

three-dimensional connectivity; it would take ~ 9,000 years for the 
best available algorithms and supercomputers to produce, using 
exact methods, a single sample from the programmed distribution, 
whereas Borealis requires only 36 μs

• USTC, China
– Gaussian Boson Sampling: 50 squeezed modes in a 100-mode 

interferometer; measured a sampling rate that is about 1014-fold 
faster than using state-of-the-art classical simulation strategies and 
supercomputers (2.5 billion years as opposed to 200 s)

Nature volume 606, pages 75–81 (2022)

Nature volume 574, pages 505–510 (2019)

Science, Vol 370, Issue 6523 pp. 1460-1463, 3 Dec 2020



What are random samplers good for?

• Quantum generative adversarial networks (arXiv:1804.08641)

• Neural networks and other machine learning algorithms powered by 
continuous-variable quantum states and processes (arXiv:1806.06871, 
arXiv:1912.08278, arXiv:2001.03622)

• Graph isomorphism and graph similarity testing (arXiv:1810.10644)

• Molecular vibronic spectra for quantum chemistry calculations 
(arXiv:1912.07634)

• Quantum adiabatic optimization algorithm or QAOA (arXiv:1902.00409) 

• Producing samples from hard-to-generate stochastic point processes 
(arXiv:1906.11972)

• Multi-variate optimization (arXiv:1909.02108)

Random samplers (Boson sampling, IQP, GBS, etc.) are not universal quantum 
computers. But they are believed to be strictly more powerful than classical computers



Conclusion

• The building blocks we covered in Modules 1 and 2 
(linear optics, coherent states, multi-photon states, 
squeezed states, photon detection, homodyne 
detection) in principle suffice to design 
“quantum-optimal” transmitters, processors, 
computers, receivers, for all applications in 
photonics-based information processing

• Yet, we don’t know how to “put together” these 
building blocks to attain best performance in most 
applications of photonic information processing!
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Course Evaluation Survey

We value your feedback on all aspects 
of this short course. Please go to the 
link provided in the Zoom Chat or in the 
email you will soon receive to give your 
opinions of what worked and what could 
be improved. 
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