Research

arXiv 2411.02734v1

Integrated lithium niobate photonic computing circuit based on efficient and high-speed electro-optic conversion

Yaowen Hu, Yunxiang Song, Xinrui Zhu, Xiangwen Guo, Shengyuan Lu, Qihang Zhang, Lingyan He, C. A. A. Franken, Keith Powell, Hana Warner, Daniel Assumpcao, Dylan Renaud, Ying Wang, Letícia Magalhães, Victoria Rosborough, Amirhassan Shams-Ansari, Xudong Li, Rebecca Cheng, Kevin Luke, Kiyoul Yang, George Barbastathis, Mian Zhang, Di Zhu, Leif Johansson, Andreas Beling, Neil Sinclair, Marko Loncar

  • physics.optics
  • physics.app-ph

Here we show a photonic computing accelerator utilizing a system-level thin-film lithium niobate circuit which overcomes this limitation. Leveraging the strong electro-optic (Pockels) effect and the scalability of this platform, we demonstrate photonic computation at speeds up to 1.36 TOPS while consuming 0.057 pJ/OP. Our system features more than 100 thin-film lithium niobate high-performance components working synergistically, surpassing state-of-the-art systems on this platform. We further demonstrate binary-classification, handwritten-digit classification, and image classification with remarkable accuracy, showcasing our system's capability of executing real algorithms. Finally, we investigate the opportunities offered by combining our system with a hybrid-integrated distributed feedback laser source and a heterogeneous-integrated modified uni-traveling carrier photodiode. Our results illustrate the promise of thin-film lithium niobate as a computational platform, addressing current bottlenecks in both electronic and photonic computation. Its unique properties of high-performance electro-optic weight encoding and conversion, wafer-scale scalability, and compatibility with integrated lasers and detectors, position thin-film lithium niobate photonics as a valuable complement to silicon photonics, with extensions to applications in ultrafast and power-efficient signal processing and ranging.

CQN Authors

Marko Lončar

Marko Loncar

Tiantsai Lin Professor of Electrical Engineering and Applied Physics
Harvard College Professor

Harvard University, John A. Paulson School of Engineering and Applied Sciences

View Profile