The following publications have been generated by CQN researchers. Note that there is a substantial delay between authoring a paper and seeing it in a peer-reviewed journal. For a more current view of CQN research work, please see our Research Feed.
Year 1
[3] R. Debroux, C. P. Michaels, C. M. Purser, N. Wan, M. E. Trusheim, J. A. Martínez, R. A. Parker, A. M. Stramma, K. C. Chen, L. de Santis, E. M. Alexeev, A. C. Ferrari, D. Englund, D. A. Gangloff, and M. Atatüre, Quantum Control of the Tin-Vacancy Spin Qubit in Diamond, http://arxiv.org/abs/2106.00723.
[4] Y. Duan, K. C. Chen, D. R. Englund, and M. E. Trusheim, A Vertically Loaded Diamond Microdisk Resonator (VLDMoRt) for Quantum Networks, http://arxiv.org/abs/2105.05695.
[5] K. C. Chen, W. Dai, C. Errando-Herranz, S. Lloyd, and D. Englund, Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon Networks, http://arxiv.org/abs/2103.07623.
[7] T. Vasantam and D. Towsley, Stability Analysis of a Quantum Network with Max-Weight Scheduling, http://arxiv.org/abs/2106.00831.
[8] M. G. de Andrade, W. Dai, S. Guha, and D. Towsley, A Quantum Walk Control Plane for Distributed Quantum Computing in Quantum Networks, http://arxiv.org/abs/2106.09839.
[9] A. Fischer and D. Towsley, Distributing Graph States Across Quantum Networks, http://arxiv.org/abs/2009.10888.
[10] A. Patil, M. Pant, D. Englund, D. Towsley, and S. Guha, Entanglement Generation in a Quantum Network at Distance-Independent Rate, http://arxiv.org/abs/2005.07247.
[11] P. Dhara, A. Patil, H. Krovi, and S. Guha, Sub-Exponential Rate versus Distance with Time Multiplexed Quantum Repeaters, http://arxiv.org/abs/2105.01002.
[17] J. Wu, C. Cui, L. Fan, and Q. Zhuang, Deterministic Microwave-Optical Transduction Based on Quantum Teleportation, http://arxiv.org/abs/2106.14037.
[20] P.-K. Chen, I. Briggs, S. Hou, and L. Fan, Ultra-Broadband Quadrature Squeezing with Thin-Film Lithium Niobate Nanophotonics, http://arxiv.org/abs/2107.02250.
[21] C. Cui, C. N. Gagatsos, S. Guha, and L. Fan, High-Purity Pulsed Squeezing Generation with Integrated Photonics, http://arxiv.org/abs/2007.07387.
[24] A. W. Schlimgen, K. Head-Marsden, L. M. Sager, P. Narang, and D. A. Mazziotti, Quantum Simulation of Open Quantum Systems Using a Unitary Decomposition of Operators, http://arxiv.org/abs/2106.12588.
[27] Z. Zhang and Q. Zhuang, Distributed Quantum Sensing, Quantum Science and Technology.
[31] Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, A Quantum Router Architecture for High-Fidelity Entanglement Flows in Quantum Networks, http://arxiv.org/abs/2005.01852.
[37] S. Guha, Q. Zhuang, and B. Bash, Infinite-Fold Enhancement in Communications Capacity Using Pre-Shared Entanglement, http://arxiv.org/abs/2001.03934.
[38] M. R. Grace, C. N. Gagatsos, and S. Guha, Entanglement Enhanced Estimation of a Parameter Embedded in Multiple Phases, http://arxiv.org/abs/2004.04152.
[39] S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, Room-Temperature Photonic Logical Qubits via Second-Order Nonlinearities, http://arxiv.org/abs/2002.07193.
[45] S. Krastanov, V. V. Albert, and L. Jiang, Optimized Entanglement Purification, Quantum.
[49] D. Gottesman, The Heisenberg Representation of Quantum Computers, http://arxiv.org/abs/quant-ph/9807006.
[52] P. Panteleev and G. Kalachev, Quantum LDPC Codes with Almost Linear Minimum Distance, http://arxiv.org/abs/2012.04068.
[54] N. P. Breuckmann and J. N. Eberhardt, LDPC Quantum Codes, http://arxiv.org/abs/2103.06309.
Year 2
- Lee Y, Bersin E, Dahlberg A, Wehner S, Englund D. A Quantum Router Architecture for High-Fidelity Entanglement Flows in Quantum Networks. arXiv [quant-ph] 2005.01852. 2020. Available: http://arxiv.org/abs/2005.01852
- Meiksin J. Quantum materials R&D forges ahead. MRS Bull. 2020;45: 885–888. doi:10.1557/mrs.2020.288
- Moody G, Sorger VJ, Blumenthal DJ, Juodawlkis PW, Loh W, Sorace-Agaskar C, et al. Roadmap on Integrated Quantum Photonics. arXiv [quant-ph] 2102.03323. 2021. Available: http://arxiv.org/abs/2102.03323
- Chen KC, Dai W, Errando-Herranz C, Lloyd S, Englund D. Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon Networks. arXiv [quant-ph] 2103.07623. 2021. Available: http://arxiv.org/abs/2103.07623
- Shi H, Hsieh M-H, Guha S, Zhang Z, Zhuang Q. Entanglement-assisted capacity regions and protocol designs for quantum multiple-access channels. npj Quantum Information. 2021;7: 1–9. doi:10.1038/s41534-021-00412-3
- Li L, Choi H, Heuck M, Englund D. Field-based design of a resonant dielectric antenna for coherent spin-photon interfaces. Opt Express. 2021;29: 16469–16476. doi:10.1364/OE.419773
- Xia Y, Li W, Zhuang Q, Zhang Z. Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network. Phys Rev X. 2021;11: 021047. doi:10.1103/PhysRevX.11.021047
- Aiello CD, Awschalom DD, Bernien H, Brower T, Brown KR, Brun TA, et al. Achieving a quantum smart workforce. Quantum Sci Technol. 2021;6: 030501. doi:10.1088/2058-9565/abfa64
- Hao S, Shi H, Li W, Shapiro JH, Zhuang Q, Zhang Z. Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity. Phys Rev Lett. 2021;126: 250501. doi:10.1103/PhysRevLett.126.250501
- Carver C, Boaks M, Kim J, Larson K, Nordin GP, Camacho RM. Automated photonic tuning of silicon microring resonators using a 3D-printed microfluidic mixer. OSA Continuum. 2021;4: 2075. doi:10.1364/osac.425058
- Zhang B, Zhuang Q. Quantum internet under random breakdowns and intentional attacks. Quantum Sci Technol. 2021;6: 045007. doi:10.1088/2058-9565/ac1041
- Zhuang Q, Zhang B. Quantum communication capacity transition of complex quantum networks. Phys Rev A. 2021;104: 022608. doi:10.1103/PhysRevA.104.022608
- Dai W, Rinaldi A, Towsley D. Entanglement Swapping in Quantum Switches: Protocol Design and Stability Analysis. arXiv [quant-ph] 2110.04116. 2021. Available: http://arxiv.org/abs/2110.04116
- Raveendran N, Vasić B. Trapping sets of quantum LDPC codes. Quantum. 2021;5: 562. doi:10.22331/q-2021-10-14-562
- Kuruma K, Piracha AH, Renaud D, Chia C, Sinclair N, Nadarajah A, et al. Telecommunication-wavelength two-dimensional photonic crystal cavities in a thin single-crystal diamond membrane. Appl Phys Lett. 2021;119: 171106. doi:10.1063/5.0061778
- Dai W, Towsley D. Entanglement Swapping for Repeater Chains with Finite Memory Sizes. arXiv [quant-ph] 2111.10994. 2021. Available: http://arxiv.org/abs/2111.10994
- Debroux R, Michaels CP, Purser CM, Wan N, Trusheim ME, Arjona Martínez J, et al. Quantum Control of the Tin-Vacancy Spin Qubit in Diamond. Phys Rev X. 2021;11: 041041. doi:10.1103/PhysRevX.11.041041
- Sayem AA, Wang Y, Lu J, Liu X, Bruch AW, Tang HX. Efficient and tunable blue light generation using lithium niobate nonlinear photonics. Appl Phys Lett. 2021;119: 231104. doi:10.1063/5.0071769
- Zhu D, Chen C, Yu M, Shao L, Hu Y, Xin CJ, et al. Spectral control of nonclassical light using an integrated thin-film lithium niobate modulator. arXiv [physics.optics] 2112.09961. 2021. Available: http://arxiv.org/abs/2112.09961
- Moody G, Sorger VJ, Blumenthal DJ, Juodawlkis PW, Loh W, Sorace-Agaskar C, et al. 2022 Roadmap on integrated quantum photonics. J Phys Photonics. 2022;4: 012501. doi:10.1088/2515-7647/ac1ef4
- Shi H, Zhuang Q. Computable limits of optical multiple-access communications. Phys Rev A. 2022;105: 022429. doi:10.1103/PhysRevA.105.022429
- Tserkis S, Head-Marsden K, Narang P. Information back-flow in quantum non-Markovian dynamics and its connection to teleportation. arXiv [quant-ph] 2203.00668. 2022. Available: http://arxiv.org/abs/2203.00668
- Tillman IJ, Rubenok A, Guha S, Seshadreesan KP. Supporting multiple entanglement flows through a continuous-variable quantum repeater. arXiv [quant-ph] 2203.07965. 2022. Available: http://arxiv.org/abs/2203.07965
- Chen P-K, Briggs I, Hou S, Fan L. Ultra-broadband quadrature squeezing with thin-film lithium niobate nanophotonics. Opt Lett. 2022;47: 1506–1509. doi:10.1364/OL.447695
- Maity S, Pingault B, Joe G, Chalupnik M, Assumpção D, Cornell E, et al. Mechanical Control of a Single Nuclear Spin. Phys Rev X. 2022;12: 011056. doi:10.1103/PhysRevX.12.011056
- Bambauer JR, Zarsky T, Mayer J. When a Small Change Makes a Big Difference: Algorithmic Fairness Among Similar Individuals. UC Davis Law Review. 2022. Available: https://papers.ssrn.com/abstract=3940705
- Asfaw A, Blais A, Brown KR, Candelaria J, Cantwell C, Carr LD, et al. Building a Quantum Engineering Undergraduate Program. IEEE Trans Educ. 2022;65: 220–242. doi:10.1109/TE.2022.3144943
- Xin CJ, Mishra J, Chen C, Zhu D, Shams-Ansari A, Langrock C, et al. Spectrally separable photon-pair generation in dispersion engineered thin-film lithium niobate. Opt Lett. 2022;47: 2830–2833. doi:10.1364/OL.456873
- Chen KC, Dhara P, Heuck M, Lee Y, Dai W, Guha S, et al. Zero-Added-Loss Entangled Photon Multiplexing for Ground- and Space-Based Quantum Networks. arXiv [quant-ph] 2206.03670. 2022. Available: http://arxiv.org/abs/2206.03670
- Raveendran N, Rengaswamy N, Rozpędek F, Raina A, Jiang L, Vasić B. Finite rate QLDPC-GKP coding scheme that surpasses the CSS Hamming bound. Quantum. 2022;6: 767. doi:10.22331/q-2022-07-20-767
- Knall EN, Knaut CM, Bekenstein R, Assumpcao DR, Stroganov PL, Gong W, et al. Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System. Phys Rev Lett. 2022;129: 053603. doi:10.1103/PhysRevLett.129.053603
- Nain P, Vardoyan G, Guha S, Towsley D. Analysis of a tripartite entanglement distribution switch. Queueing Syst. 2022;101: 291–328. doi:10.1007/s11134-021-09731-w
- Gong Z, Rodriguez N, Gagatsos CN, Guha S, Bash BA. Quantum-Enhanced Transmittance Sensing. arXiv [quant-ph] 2208.06447. 2022. Available: http://arxiv.org/abs/2208.06447
- Han X, Zou C-L, Fu W, Xu M, Xu Y, Tang HX. Superconducting cavity electromechanics: The realization of an acoustic frequency comb at microwave frequencies. Phys Rev Lett. 2022;129. doi:10.1103/physrevlett.129.107701
- Sajjad A, Grace MR, Zhuang Q, Guha S. Attaining quantum limited precision of localizing an object in passive imaging. Phys Rev A. 2021. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.022410
- Grace MR, Gagatsos CN, Guha S. Entanglement-enhanced estimation of a parameter embedded in multiple phases. Physical Review Research. 2021. Available: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.033114
- Sidhu JS, Bullock MS, Guha S, Lupo C. Unambiguous discrimination of coherent states. arXiv preprint arXiv:210900008. 2021. Available: http://arxiv.org/abs/2109.00008
- Gagatsos CN, Guha S. Impossibility to produce arbitrary non-Gaussian states using zero-mean Gaussian states and partial photon number resolving detection. Physical Review Research. 2021. Available: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.043182
- Pizzimenti AJ, Lukens JM, Lu HH, Peters NA, Guha S. Non-Gaussian photonic state engineering with the quantum frequency processor. Phys Rev A. 2021. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.062437
- Shi H, Hsieh MH, Guha S, Zhang Z. Entanglement-assisted multiple-access channels: capacity regions and protocol designs. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9518082/
- Anderson EJD, Guha S, Bash BA. Fundamental limits of bosonic broadcast channels. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9518198/
- Gong Z, Gagatsos CN, Guha S. Fundamental Limits of Loss Sensing over Bosonic Channels. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9517810/
- Dhara P, Johnson SJ, Gagatsos CN, Kwiat PG. Heralded-Multiplexed High-Efficiency Cascaded Source of Dual-Rail Polarization-Entangled Photon Pairs using Spontaneous Parametric Down Conversion. arXiv preprint arXiv. 2021. Available: https://arxiv.org/abs/2107.14360
- Lee KK, Guha S, Ashok A. Quantum-inspired Optical Super-resolution Adaptive Imaging. Computational Optical Sensing and. 2021. Available: https://opg.optica.org/abstract.cfm?uri=COSI-2021-CF4B.2
- Grace MR, Guha S. Quantum-Optimal Object Discrimination in Sub-Diffraction Incoherent Imaging. arXiv preprint arXiv:210700673. 2021. Available: http://arxiv.org/abs/2107.00673
- Tahmasbi M, Bash BA, Guha S. Signaling for covert quantum sensing. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9517722/
- Dhara P, Patil A, Krovi H, Guha S. Subexponential rate versus distance with time-multiplexed quantum repeaters. Phys Rev A. 2021. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.052612
- Dhara P, Linke NM, Waks E, Guha S. Multiplexed quantum repeaters based on dual-species trapped-ion systems. Phys Rev A. 2022. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.022623
- Jagannathan A, Grace M, Brasher O, Shapiro JH. Demonstration of quantum-limited discrimination of multicopy pure versus mixed states. Phys Rev A. 2022. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.032446
- Seshadreesan KP, Dhara P, Patil A, Jiang L, Guha S. Coherent manipulation of graph states composed of finite-energy Gottesman-Kitaev-Preskill-encoded qubits. Phys Rev A. 2022. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.052416
- Hao S, Shi H, Gagatsos CN, Mishra M, Bash B, Djordjevic I, et al. Demonstration of Entanglement-Enhanced Covert Sensing. Phys Rev Lett. 2022;129: 010501. doi:10.1103/PhysRevLett.129.010501
- Patil A, Pant M, Englund D, Towsley D. Entanglement generation in a quantum network at distance-independent rate. npj Quantum Information. 2022. Available: https://www.nature.com/articles/s41534-022-00536-0
- Lee KK, Gagatsos C, Guha S, Ashok A. Quantum Multi-Parameter Adaptive Bayesian Estimation and Application to Super-Resolution Imaging. arXiv preprint arXiv:220209980. 2022. Available: http://arxiv.org/abs/2202.09980
- Terry C. On its 12th anniversary, it’s clear the 2010 U.s. “broadband plan” was A colossal dud. In: Techdirt [Internet]. 16 Mar 2022 [cited 19 Sep 2022]. Available: https://www.techdirt.com/2022/03/16/on-its-12-year-anniversary-its-clear-the-2010-u-s-broadband -plan-was-a-colossal-dud/
- Raymer MG, Guha S. How U.S. policymakers can enable breakthroughs in quantum science. In: Brookings [Internet]. 13 Jun 2022 [cited 19 Sep 2022]. Available: https://www.brookings.edu/techstream/how-u-s-policymakers-can-enable-breakthroughs-in-quantu m-science/
- D. S. Levonian, R. Riedinger, B. Machielse, E. N. Knall, M. K. Bhaskar, C. M. Knaut, R. Bekenstein, H. Park, M. Lončar, and M. D. Lukin, Optical Entanglement of Distinguishable Quantum Emitters, Phys. Rev. Lett. 2022;128: 213602.
- S. Merkouche, V. Thiel, A. O. C. Davis, and B. J. Smith, Heralding Multiple Photonic Pulsed Bell Pairs via Frequency-Resolved Entanglement Swapping, Phys. Rev. Lett. 2022; 128: 063602.
- Dixon, Grein, Murphy, Stevens, Hamilton. Optical Fiber Characterization for the Operation of a Boston Area Quantum Network Testbed. Quantum 20. Available: https://opg.optica.org/abstract.cfm?uri=QUANTUM-2022-QTu2A.34
- Krastanov S, Raniwala H, Holzgrafe J, Jacobs K, Lončar M, Reagor MJ, et al. Optically Heralded Entanglement of Superconducting Systems in Quantum Networks. Phys Rev Lett. 2021;127: 040503. doi:10.1103/PhysRevLett.127.040503
- A. Patil, J. I. Jacobson, E. Van Milligen, D. Towsley, and S. Guha, Distance-Independent Entanglement Generation in a Quantum Network Using Space-Time Multiplexed Greenberger–Horne–Zeilinger (GHZ) Measurements, in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (2021), pp. 334–345.
- A. Patil, M. Pant, D. Englund, D. Towsley, and S. Guha, Entanglement Generation in a Quantum Network at Distance-Independent Rate, Npj Quantum Information 8, 1 (2022).
- F. Rozpędek, K. Noh, Q. Xu, S. Guha, and L. Jiang, Quantum Repeaters Based on Concatenated Bosonic and Discrete-Variable Quantum Codes, Npj Quantum Information 7, 1 (2021).
- N. Rengaswamy, A. Raina, N. Raveendran, and B. Vasić, Distilling GHZ States Using Stabilizer Codes, http://arxiv.org/abs/2109.06248.
- S. Krastanov, A. S. de la Cerda, and P. Narang, Heterogeneous Multipartite Entanglement Purification for Size-Constrained Quantum Devices, Phys. Rev. Research 3, 033164 (2021).
- A. Chandra, W. Dai, and D. Towsley, Scheduling Quantum Teleportation with Noisy Memories, http://arxiv.org/abs/2205.06300.
- M. Guedes de Andrade, J. Días, J. Navas, S. Guha, I. Montaño, B. Smith, M. Raymer, and D. Towsley, Quantum Network Tomography with Multi-Party State Distribution, arXiv E-Prints arXiv:2206.02920 (2022).
- N. K. Panigrahy, P. Dhara, D. Towsley, S. Guha, and L. Tassiulas, Optimal Entanglement Distribution Using Satellite Based Quantum Networks, http://arxiv.org/abs/2205.12354. 215
Year 3
1 D. Chystas, N. Raveendran, A. Pradhan, B. Vasic Quaternary-binary Message-Passing Decoder for Quantum LDPC Codes, in IEEE Global Communications Conference (Globecomm 2023)
2 A. Pradhan, N.Raveendran, N. Rengaswamy, X. Xiao, B. Vasic Learning to Decode Quantum Trapping Set in QLDPC Codes, in IEEE International Symposium on Topics in Coding (ISTC 2023)
3 N. Raveendran, E. Boutillon, B. Vasic Low-Latency Flipping Decoders for Improving Error-Floors Performance of Quantum LDPC Codes, in IEEE International Symposium on Topics in Coding (ISTC 2023)
4 B. Zhou, B.A. Bash, S. Guha, C.N. Gagatsos, Bayesian minimum mean square error for transmissivity sensing. arXiv [quant-ph] 2304.05539. 2023. Available: http://arxiv.org/abs/2304.05539
5 D.W. Laorenza, D.E. Freedman, Could the Quantum Internet Be Comprised of Molecular Spins with Tunable Optical Interfaces? J Am Chem Soc. 2022;144: 21810–21825. doi:10.1021/jacs.2c07775
6 P. Alsing, P. Battle, J.C. Bienfang, T. Borders, T. Brower-Thomas, L. Carr, et al., Accelerating Progress Towards Practical Quantum Advantage: A National Science Foundation Project Scoping Workshop. arXiv [quant-ph] 2210.14757. 2022. Available: http://arxiv.org/abs/2210.14757
7 K.R. Mullin, D.W. Laorenza, D.E. Freedman, J.M. Rondinelli, Quantum sensing of magnetic fields with molecular color centers. arXiv [cond-mat.mtrl-sci] 2302.04248. 2023. Available: http://arxiv.org/abs/2302.04248
8 S. Krastanov, K. Jacobs, G. Gilbert, D.R. Englund, Controlled-phase gate by dynamic coupling of photons to a two-level emitter. npj Quantum. 2022. Available: https://www.nature.com/articles/s41534-022-00604-5
9 C. Michaels, J. Arjona Martinez, R. Parker, A. Stramma, K. Chen, I. Harris, et al., Spectroscopic Investigations of the Group IV spin qubits in Diamond. Bull Am Phys Soc. 2023. Available: https://meetings.aps.org/Meeting/MAR23/Session/W65.8
10 U. Saha, J.D. Siverns, J. Hannegan, M. Prabhu, Routing single photons from a trapped ion using a photonic integrated circuit. Physical Review. 2023. Available: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.19.034001
11 H. Wang, M.E. Trusheim, L. Kim, H. Raniwala, D.R. Englund, Field programmable spin arrays for scalable quantum repeaters. Nat Commun. 2023;14: 704. doi:10.1038/s41467-023-36098-8
12 *D.J. Starling, K. Shtyrkova, I. Christen, R. Murphy, L. Li, K.C. Chen, et al., A fully packaged multi-channel cryogenic quantum memory module. arXiv [quant-ph]. 2302.12919. 2023. Available: http://arxiv.org/abs/2302.12919
13 *L. Bugalho, E.Z. Cruzeiro, K.C. Chen, W. Dai, D. Englund, Y. Omar, Resource-efficient simulation of noisy quantum circuits and application to network-enabled QRAM optimization. arXiv [quant-ph] 2210.13494. 2022. Available: http://arxiv.org/abs/2210.13494
14 *M. Sutula, I. Christen, E. Bersin, M.P. Walsh, K.C. Chen, J. Mallek, et al., Large-scale optical characterization of solid-state quantum emitters. arXiv [quant-ph] 2210.13643. 2022. Available: http://arxiv.org/abs/2210.13643