Publications

The following publications have been generated by CQN researchers. Note that there is a substantial delay between authoring a paper and seeing it in a peer-reviewed journal. For a more current view of CQN research work, please see our Research Feed.

Year 1

[1] S. Hao, H. Shi, W. Li, J. H. Shapiro, Q. Zhuang, and Z. Zhang, Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity, Phys. Rev. Lett. 126, 250501 (2021).

[2] Y. Xia, W. Li, Q. Zhuang, and Z. Zhang, Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network, Phys. Rev. X 11, 021047 (2021).

[3] R. Debroux, C. P. Michaels, C. M. Purser, N. Wan, M. E. Trusheim, J. A. Martínez, R. A. Parker, A. M. Stramma, K. C. Chen, L. de Santis, E. M. Alexeev, A. C. Ferrari, D. Englund, D. A. Gangloff, and M. Atatüre, Quantum Control of the Tin-Vacancy Spin Qubit in Diamond, http://arxiv.org/abs/2106.00723.

[4] Y. Duan, K. C. Chen, D. R. Englund, and M. E. Trusheim, A Vertically Loaded Diamond Microdisk Resonator (VLDMoRt) for Quantum Networks, http://arxiv.org/abs/2105.05695.

[5] K. C. Chen, W. Dai, C. Errando-Herranz, S. Lloyd, and D. Englund, Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon Networks, http://arxiv.org/abs/2103.07623.

[6] C. T. Hann, G. Lee, S. M. Girvin, and L. Jiang, Resilience of Quantum Random Access Memory to Generic Noise, PRX Quantum 2, 020311 (2021).

[7] T. Vasantam and D. Towsley, Stability Analysis of a Quantum Network with Max-Weight Scheduling, http://arxiv.org/abs/2106.00831.

[8] M. G. de Andrade, W. Dai, S. Guha, and D. Towsley, A Quantum Walk Control Plane for Distributed Quantum Computing in Quantum Networks, http://arxiv.org/abs/2106.09839.

[9] A. Fischer and D. Towsley, Distributing Graph States Across Quantum Networks, http://arxiv.org/abs/2009.10888.

[10] A. Patil, M. Pant, D. Englund, D. Towsley, and S. Guha, Entanglement Generation in a Quantum Network at Distance-Independent Rate, http://arxiv.org/abs/2005.07247.

[11] P. Dhara, A. Patil, H. Krovi, and S. Guha, Sub-Exponential Rate versus Distance with Time Multiplexed Quantum Repeaters, http://arxiv.org/abs/2105.01002.

[12] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, On the Capacity Region of Bipartite and Tripartite Entanglement Switching, SIGMETRICS Perform. Eval. Rev. 48, 45 (2021).

[13] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, On the Stochastic Analysis of a Quantum Entanglement Distribution Switch, IEEE Transactions on Quantum Engineering 2, 1 (2021).

[14] X. Han, W. Fu, C.-L. Zou, L. Jiang, and H. X. Tang, Microwave-Optical Quantum Frequency Conversion, Optica, OPTICA 8, 1050 (2021).

[15] S. Krastanov, H. Raniwala, J. Holzgrafe, K. Jacobs, M. Lončar, M. J. Reagor, and D. R. Englund, Optically Heralded Entanglement of Superconducting Systems in Quantum Networks, Phys. Rev. Lett. 127, 040503 (2021).

[16] K. Kuruma, B. Pingault, C. Chia, D. Renaud, P. Hoffmann, S. Iwamoto, C. Ronning, and M. Lončar, Coupling of a Single Tin-Vacancy Center to a Photonic Crystal Cavity in Diamond, Appl. Phys. Lett. 118, 230601 (2021).

[17] J. Wu, C. Cui, L. Fan, and Q. Zhuang, Deterministic Microwave-Optical Transduction Based on Quantum Teleportation, http://arxiv.org/abs/2106.14037.

[18] T. Neuman, M. Eichenfield, M. E. Trusheim, L. Hackett, P. Narang, and D. Englund, A Phononic Interface between a Superconducting Quantum Processor and Quantum Networked Spin Memories, Npj Quantum Information 7, 1 (2021).

[19] E. Rosenfeld, R. Riedinger, J. Gieseler, M. Schuetz, and M. D. Lukin, Efficient Entanglement of Spin Qubits Mediated by a Hot Mechanical Oscillator, Phys. Rev. Lett. 126, 250505 (2021).

[20] P.-K. Chen, I. Briggs, S. Hou, and L. Fan, Ultra-Broadband Quadrature Squeezing with Thin-Film Lithium Niobate Nanophotonics, http://arxiv.org/abs/2107.02250.

[21] C. Cui, C. N. Gagatsos, S. Guha, and L. Fan, High-Purity Pulsed Squeezing Generation with Integrated Photonics, http://arxiv.org/abs/2007.07387.

[22] I. Briggs, S. Hou, C. Cui, and L. Fan, Simultaneous Type-I and Type-II Phase Matching for Second-Order Nonlinearity in Integrated Lithium Niobate Waveguide, Opt. Express, OE 29, 26183 (2021).

[23] R. M. Camacho, Open Source Photonics Simulation for Quantum Applications, in Photonics for Quantum 2021, Vol. 11844 (International Society for Optics and Photonics, 2021), p. 118440O.

[24] A. W. Schlimgen, K. Head-Marsden, L. M. Sager, P. Narang, and D. A. Mazziotti, Quantum Simulation of Open Quantum Systems Using a Unitary Decomposition of Operators, http://arxiv.org/abs/2106.12588.

[25] B. Zhang and Q. Zhuang, Quantum Internet under Random Breakdowns and Intentional Attacks, Quantum Sci. Technol. 6, 045007 (2021).

[26] H. Shi, M.-H. Hsieh, S. Guha, Z. Zhang, and Q. Zhuang, Entanglement-Assisted Capacity Regions and Protocol Designs for Quantum Multiple-Access Channels, Npj Quantum Information 7, 1 (2021).

[27] Z. Zhang and Q. Zhuang, Distributed Quantum Sensing, Quantum Science and Technology.

[28] M. R. Grace, C. N. Gagatsos, and S. Guha, Entanglement-Enhanced Estimation of a Parameter Embedded in Multiple Phases, Phys. Rev. Research 3, 033114 (2021).

[29] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a Qubit in an Oscillator, Phys. Rev. A 64, 012310 (2001).

[30] K. Noh, V. V. Albert, and L. Jiang, Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes, IEEE Trans. Inf. Theory 65, 2563 (2019).

[31] Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, A Quantum Router Architecture for High-Fidelity Entanglement Flows in Quantum Networks, http://arxiv.org/abs/2005.01852.

[32] K. C. Chen, E. Bersin, and D. Englund, A Polarization Encoded Photon-to-Spin Interface, Npj Quantum Information 7, 1 (2021).

[33] M. M. Wilde, H. Krovi, and T. A. Brun, Convolutional Entanglement Distillation, in 2010 IEEE International Symposium on Information Theory (2010), pp. 2657–2661.

[34] G. D. Forney, M. Grassl, and S. Guha, Convolutional and Tail-Biting Quantum Error-Correcting Codes, IEEE Transactions on (2007).

[35] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, On the Stochastic Analysis of a Quantum Entanglement Switch, ACM SIGMETRICS (2019).

[36] H. Shi, M.-H. Hsieh, S. Guha, Z. Zhang, and Q. Zhuang, Entanglement-Assisted Multiple-Access Channels: Capacity Regions and Protocol Designs, Npj Quantum Inf 7, 74 (2021).

[37] S. Guha, Q. Zhuang, and B. Bash, Infinite-Fold Enhancement in Communications Capacity Using Pre-Shared Entanglement, http://arxiv.org/abs/2001.03934.

[38] M. R. Grace, C. N. Gagatsos, and S. Guha, Entanglement Enhanced Estimation of a Parameter Embedded in Multiple Phases, http://arxiv.org/abs/2004.04152.

[39] S. Krastanov, M. Heuck, J. H. Shapiro, P. Narang, D. R. Englund, and K. Jacobs, Room-Temperature Photonic Logical Qubits via Second-Order Nonlinearities, http://arxiv.org/abs/2002.07193.

[40] F. Rozpędek, K. Noh, Q. Xu, S. Guha, and L. Jiang, Quantum Repeaters Based on Concatenated Bosonic and Discrete-Variable Quantum Codes, Npj Quantum Information 7, 1 (2021).

[41] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-State Entanglement and Quantum Error Correction, Phys. Rev. A 54, 3824 (1996).

[42] F. Leditzky, N. Datta, and G. Smith, Useful States and Entanglement Distillation, IEEE Transactions on Information Theory.

[43] F. Rozpędek, T. Schiet, L. P. Thinh, D. Elkouss, A. C. Doherty, and S. Wehner, Optimizing Practical Entanglement Distillation, Physical Review A.

[44] K. Fang, X. Wang, M. Tomamichel, and R. Duan, Non-Asymptotic Entanglement Distillation, IEEE Transactions on Information Theory.

[45] S. Krastanov, V. V. Albert, and L. Jiang, Optimized Entanglement Purification, Quantum.

[46] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, Quantum Repeaters Based on Entanglement Purification, Physical Review A.

[47] A. Miyake and H. J. Briegel, Distillation of Multipartite Entanglement by Complementary Stabilizer Measurements, Phys. Rev. Lett. 95, 220501 (2005).

[48] W. Dür and H. J. Briegel, Entanglement Purification and Quantum Error Correction, Reports on Progress in Physics.

[49] D. Gottesman, The Heisenberg Representation of Quantum Computers, http://arxiv.org/abs/quant-ph/9807006.

[50] M. M. Wilde, H. Krovi, and T. A. Brun, Convolutional Entanglement Distillation, 2010 IEEE International Symposium on Information Theory.

[51] M. B. Hastings, J. Haah, and R. O’Donnell, Fiber Bundle Codes: Breaking the N 1/2 Polylog( N ) Barrier for Quantum LDPC Codes, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing.

[52] P. Panteleev and G. Kalachev, Quantum LDPC Codes with Almost Linear Minimum Distance, http://arxiv.org/abs/2012.04068.

[53] N. P. Breuckmann and J. N. Eberhardt, Balanced Product Quantum Codes, IEEE Transactions on Information Theory.

[54] N. P. Breuckmann and J. N. Eberhardt, LDPC Quantum Codes, http://arxiv.org/abs/2103.06309.

[55] Y. Lee, E. Bersin, A. Dahlberg, S. Wehner, and D. Englund, A Quantum Router Architecture for High-Fidelity Entanglement Flows in Multi-User Quantum Networks, arXiv Preprint arXiv:2005. 01852 3, (2020).

[56] L. Li, H. Choi, M. Heuck, and D. Englund, Field-Based Design of a Resonant Dielectric Antenna for Coherent Spin-Photon Interfaces, Opt. Express 29, 16469 (2021).

[57] T. Neuman, D. S. Wang, and P. Narang, Nanomagnonic Cavities for Strong Spin-Magnon Coupling and Magnon-Mediated Spin-Spin Interactions, Phys. Rev. Lett. 125, 247702 (2020).

[58] D. S. Wang, T. Neuman, and P. Narang, Spin Emitters beyond the Point Dipole Approximation in Nanomagnonic Cavities, J. Phys. Chem. C 125, 6222 (2021).

[59] F. Hayee, L. Yu, J. L. Zhang, C. J. Ciccarino, M. Nguyen, A. F. Marshall, I. Aharonovich, J. Vučković, P. Narang, T. F. Heinz, and J. A. Dionne, Revealing Multiple Classes of Stable Quantum Emitters in Hexagonal Boron Nitride with Correlated Optical and Electron Microscopy, Nat. Mater. 19, 534 (2020).

Year 2

  1. Lee Y, Bersin E, Dahlberg A, Wehner S, Englund D. A Quantum Router Architecture for High-Fidelity Entanglement Flows in Quantum Networks. arXiv [quant-ph] 2005.01852. 2020. Available: http://arxiv.org/abs/2005.01852
  2. Meiksin J. Quantum materials R&D forges ahead. MRS Bull. 2020;45: 885–888. doi:10.1557/mrs.2020.288
  3. Moody G, Sorger VJ, Blumenthal DJ, Juodawlkis PW, Loh W, Sorace-Agaskar C, et al. Roadmap on Integrated Quantum Photonics. arXiv [quant-ph] 2102.03323. 2021. Available: http://arxiv.org/abs/2102.03323
  4. Chen KC, Dai W, Errando-Herranz C, Lloyd S, Englund D. Scalable and High-Fidelity Quantum Random Access Memory in Spin-Photon Networks. arXiv [quant-ph] 2103.07623. 2021. Available: http://arxiv.org/abs/2103.07623
  5. Shi H, Hsieh M-H, Guha S, Zhang Z, Zhuang Q. Entanglement-assisted capacity regions and protocol designs for quantum multiple-access channels. npj Quantum Information. 2021;7: 1–9. doi:10.1038/s41534-021-00412-3
  6. Li L, Choi H, Heuck M, Englund D. Field-based design of a resonant dielectric antenna for coherent spin-photon interfaces. Opt Express. 2021;29: 16469–16476. doi:10.1364/OE.419773
  7. Xia Y, Li W, Zhuang Q, Zhang Z. Quantum-Enhanced Data Classification with a Variational Entangled Sensor Network. Phys Rev X. 2021;11: 021047. doi:10.1103/PhysRevX.11.021047
  8. Aiello CD, Awschalom DD, Bernien H, Brower T, Brown KR, Brun TA, et al. Achieving a quantum smart workforce. Quantum Sci Technol. 2021;6: 030501. doi:10.1088/2058-9565/abfa64
  9. Hao S, Shi H, Li W, Shapiro JH, Zhuang Q, Zhang Z. Entanglement-Assisted Communication Surpassing the Ultimate Classical Capacity. Phys Rev Lett. 2021;126: 250501. doi:10.1103/PhysRevLett.126.250501
  10. Carver C, Boaks M, Kim J, Larson K, Nordin GP, Camacho RM. Automated photonic tuning of silicon microring resonators using a 3D-printed microfluidic mixer. OSA Continuum. 2021;4: 2075. doi:10.1364/osac.425058
  11. Zhang B, Zhuang Q. Quantum internet under random breakdowns and intentional attacks. Quantum Sci Technol. 2021;6: 045007. doi:10.1088/2058-9565/ac1041
  12. Zhuang Q, Zhang B. Quantum communication capacity transition of complex quantum networks. Phys Rev A. 2021;104: 022608. doi:10.1103/PhysRevA.104.022608
  13. Dai W, Rinaldi A, Towsley D. Entanglement Swapping in Quantum Switches: Protocol Design and Stability Analysis. arXiv [quant-ph] 2110.04116. 2021. Available: http://arxiv.org/abs/2110.04116
  14. Raveendran N, Vasić B. Trapping sets of quantum LDPC codes. Quantum. 2021;5: 562. doi:10.22331/q-2021-10-14-562
  15. Kuruma K, Piracha AH, Renaud D, Chia C, Sinclair N, Nadarajah A, et al. Telecommunication-wavelength two-dimensional photonic crystal cavities in a thin single-crystal diamond membrane. Appl Phys Lett. 2021;119: 171106. doi:10.1063/5.0061778
  16. Dai W, Towsley D. Entanglement Swapping for Repeater Chains with Finite Memory Sizes. arXiv [quant-ph] 2111.10994. 2021. Available: http://arxiv.org/abs/2111.10994
  17. Debroux R, Michaels CP, Purser CM, Wan N, Trusheim ME, Arjona Martínez J, et al. Quantum Control of the Tin-Vacancy Spin Qubit in Diamond. Phys Rev X. 2021;11: 041041. doi:10.1103/PhysRevX.11.041041
  18. Sayem AA, Wang Y, Lu J, Liu X, Bruch AW, Tang HX. Efficient and tunable blue light generation using lithium niobate nonlinear photonics. Appl Phys Lett. 2021;119: 231104. doi:10.1063/5.0071769
  19. Zhu D, Chen C, Yu M, Shao L, Hu Y, Xin CJ, et al. Spectral control of nonclassical light using an integrated thin-film lithium niobate modulator. arXiv [physics.optics] 2112.09961. 2021. Available: http://arxiv.org/abs/2112.09961
  20. Moody G, Sorger VJ, Blumenthal DJ, Juodawlkis PW, Loh W, Sorace-Agaskar C, et al. 2022 Roadmap on integrated quantum photonics. J Phys Photonics. 2022;4: 012501. doi:10.1088/2515-7647/ac1ef4
  21. Shi H, Zhuang Q. Computable limits of optical multiple-access communications. Phys Rev A. 2022;105: 022429. doi:10.1103/PhysRevA.105.022429
  22. Tserkis S, Head-Marsden K, Narang P. Information back-flow in quantum non-Markovian dynamics and its connection to teleportation. arXiv [quant-ph] 2203.00668. 2022. Available: http://arxiv.org/abs/2203.00668
  23. Tillman IJ, Rubenok A, Guha S, Seshadreesan KP. Supporting multiple entanglement flows through a continuous-variable quantum repeater. arXiv [quant-ph] 2203.07965. 2022. Available: http://arxiv.org/abs/2203.07965
  24. Chen P-K, Briggs I, Hou S, Fan L. Ultra-broadband quadrature squeezing with thin-film lithium niobate nanophotonics. Opt Lett. 2022;47: 1506–1509. doi:10.1364/OL.447695
  25. Maity S, Pingault B, Joe G, Chalupnik M, Assumpção D, Cornell E, et al. Mechanical Control of a Single Nuclear Spin. Phys Rev X. 2022;12: 011056. doi:10.1103/PhysRevX.12.011056
  26. Bambauer JR, Zarsky T, Mayer J. When a Small Change Makes a Big Difference: Algorithmic Fairness Among Similar Individuals. UC Davis Law Review. 2022. Available: https://papers.ssrn.com/abstract=3940705
  27. Asfaw A, Blais A, Brown KR, Candelaria J, Cantwell C, Carr LD, et al. Building a Quantum Engineering Undergraduate Program. IEEE Trans Educ. 2022;65: 220–242. doi:10.1109/TE.2022.3144943
  28. Xin CJ, Mishra J, Chen C, Zhu D, Shams-Ansari A, Langrock C, et al. Spectrally separable photon-pair generation in dispersion engineered thin-film lithium niobate. Opt Lett. 2022;47: 2830–2833. doi:10.1364/OL.456873
  29. Chen KC, Dhara P, Heuck M, Lee Y, Dai W, Guha S, et al. Zero-Added-Loss Entangled Photon Multiplexing for Ground- and Space-Based Quantum Networks. arXiv [quant-ph] 2206.03670. 2022. Available: http://arxiv.org/abs/2206.03670
  30. Raveendran N, Rengaswamy N, Rozpędek F, Raina A, Jiang L, Vasić B. Finite rate QLDPC-GKP coding scheme that surpasses the CSS Hamming bound. Quantum. 2022;6: 767. doi:10.22331/q-2022-07-20-767
  31. Knall EN, Knaut CM, Bekenstein R, Assumpcao DR, Stroganov PL, Gong W, et al. Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System. Phys Rev Lett. 2022;129: 053603. doi:10.1103/PhysRevLett.129.053603
  32. Nain P, Vardoyan G, Guha S, Towsley D. Analysis of a tripartite entanglement distribution switch. Queueing Syst. 2022;101: 291–328. doi:10.1007/s11134-021-09731-w
  33. Gong Z, Rodriguez N, Gagatsos CN, Guha S, Bash BA. Quantum-Enhanced Transmittance Sensing. arXiv [quant-ph] 2208.06447. 2022. Available: http://arxiv.org/abs/2208.06447
  34. Han X, Zou C-L, Fu W, Xu M, Xu Y, Tang HX. Superconducting cavity electromechanics: The realization of an acoustic frequency comb at microwave frequencies. Phys Rev Lett. 2022;129. doi:10.1103/physrevlett.129.107701
  35. Sajjad A, Grace MR, Zhuang Q, Guha S. Attaining quantum limited precision of localizing an object in passive imaging. Phys Rev A. 2021. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.022410
  36. Grace MR, Gagatsos CN, Guha S. Entanglement-enhanced estimation of a parameter embedded in multiple phases. Physical Review Research. 2021. Available: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.033114
  37. Sidhu JS, Bullock MS, Guha S, Lupo C. Unambiguous discrimination of coherent states. arXiv preprint arXiv:210900008. 2021. Available: http://arxiv.org/abs/2109.00008
  38. Gagatsos CN, Guha S. Impossibility to produce arbitrary non-Gaussian states using zero-mean Gaussian states and partial photon number resolving detection. Physical Review Research. 2021. Available: https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.3.043182
  39. Pizzimenti AJ, Lukens JM, Lu HH, Peters NA, Guha S. Non-Gaussian photonic state engineering with the quantum frequency processor. Phys Rev A. 2021. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.062437
  40. Shi H, Hsieh MH, Guha S, Zhang Z. Entanglement-assisted multiple-access channels: capacity regions and protocol designs. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9518082/
  41. Anderson EJD, Guha S, Bash BA. Fundamental limits of bosonic broadcast channels. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9518198/
  42. Gong Z, Gagatsos CN, Guha S. Fundamental Limits of Loss Sensing over Bosonic Channels. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9517810/
  43. Dhara P, Johnson SJ, Gagatsos CN, Kwiat PG. Heralded-Multiplexed High-Efficiency Cascaded Source of Dual-Rail Polarization-Entangled Photon Pairs using Spontaneous Parametric Down Conversion. arXiv preprint arXiv. 2021. Available: https://arxiv.org/abs/2107.14360
  44. Lee KK, Guha S, Ashok A. Quantum-inspired Optical Super-resolution Adaptive Imaging. Computational Optical Sensing and. 2021. Available: https://opg.optica.org/abstract.cfm?uri=COSI-2021-CF4B.2
  45. Grace MR, Guha S. Quantum-Optimal Object Discrimination in Sub-Diffraction Incoherent Imaging. arXiv preprint arXiv:210700673. 2021. Available: http://arxiv.org/abs/2107.00673
  46. Tahmasbi M, Bash BA, Guha S. Signaling for covert quantum sensing. 2021 IEEE International. 2021. Available: https://ieeexplore.ieee.org/abstract/document/9517722/
  47. Dhara P, Patil A, Krovi H, Guha S. Subexponential rate versus distance with time-multiplexed quantum repeaters. Phys Rev A. 2021. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.104.052612
  48. Dhara P, Linke NM, Waks E, Guha S. Multiplexed quantum repeaters based on dual-species trapped-ion systems. Phys Rev A. 2022. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.022623
  49. Jagannathan A, Grace M, Brasher O, Shapiro JH. Demonstration of quantum-limited discrimination of multicopy pure versus mixed states. Phys Rev A. 2022. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.032446
  50. Seshadreesan KP, Dhara P, Patil A, Jiang L, Guha S. Coherent manipulation of graph states composed of finite-energy Gottesman-Kitaev-Preskill-encoded qubits. Phys Rev A. 2022. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.052416
  51. Hao S, Shi H, Gagatsos CN, Mishra M, Bash B, Djordjevic I, et al. Demonstration of Entanglement-Enhanced Covert Sensing. Phys Rev Lett. 2022;129: 010501. doi:10.1103/PhysRevLett.129.010501
  52. Patil A, Pant M, Englund D, Towsley D. Entanglement generation in a quantum network at distance-independent rate. npj Quantum Information. 2022. Available: https://www.nature.com/articles/s41534-022-00536-0
  53. Lee KK, Gagatsos C, Guha S, Ashok A. Quantum Multi-Parameter Adaptive Bayesian Estimation and Application to Super-Resolution Imaging. arXiv preprint arXiv:220209980. 2022. Available: http://arxiv.org/abs/2202.09980
  54. Terry C. On its 12th anniversary, it’s clear the 2010 U.s. “broadband plan” was A colossal dud. In: Techdirt [Internet]. 16 Mar 2022 [cited 19 Sep 2022]. Available: https://www.techdirt.com/2022/03/16/on-its-12-year-anniversary-its-clear-the-2010-u-s-broadband -plan-was-a-colossal-dud/
  55. Raymer MG, Guha S. How U.S. policymakers can enable breakthroughs in quantum science. In: Brookings [Internet]. 13 Jun 2022 [cited 19 Sep 2022]. Available: https://www.brookings.edu/techstream/how-u-s-policymakers-can-enable-breakthroughs-in-quantu m-science/
  56. D. S. Levonian, R. Riedinger, B. Machielse, E. N. Knall, M. K. Bhaskar, C. M. Knaut, R. Bekenstein, H. Park, M. Lončar, and M. D. Lukin, Optical Entanglement of Distinguishable Quantum Emitters, Phys. Rev. Lett. 2022;128: 213602.
  57. S. Merkouche, V. Thiel, A. O. C. Davis, and B. J. Smith, Heralding Multiple Photonic Pulsed Bell Pairs via Frequency-Resolved Entanglement Swapping, Phys. Rev. Lett. 2022; 128: 063602.
  58. Dixon, Grein, Murphy, Stevens, Hamilton. Optical Fiber Characterization for the Operation of a Boston Area Quantum Network Testbed. Quantum 20. Available: https://opg.optica.org/abstract.cfm?uri=QUANTUM-2022-QTu2A.34
  59. Krastanov S, Raniwala H, Holzgrafe J, Jacobs K, Lončar M, Reagor MJ, et al. Optically Heralded Entanglement of Superconducting Systems in Quantum Networks. Phys Rev Lett. 2021;127: 040503. doi:10.1103/PhysRevLett.127.040503
  60. A. Patil, J. I. Jacobson, E. Van Milligen, D. Towsley, and S. Guha, Distance-Independent Entanglement Generation in a Quantum Network Using Space-Time Multiplexed Greenberger–Horne–Zeilinger (GHZ) Measurements, in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (2021), pp. 334–345.
  61. A. Patil, M. Pant, D. Englund, D. Towsley, and S. Guha, Entanglement Generation in a Quantum Network at Distance-Independent Rate, Npj Quantum Information 8, 1 (2022).
  62. F. Rozpędek, K. Noh, Q. Xu, S. Guha, and L. Jiang, Quantum Repeaters Based on Concatenated Bosonic and Discrete-Variable Quantum Codes, Npj Quantum Information 7, 1 (2021).
  63. N. Rengaswamy, A. Raina, N. Raveendran, and B. Vasić, Distilling GHZ States Using Stabilizer Codes, http://arxiv.org/abs/2109.06248.
  64. S. Krastanov, A. S. de la Cerda, and P. Narang, Heterogeneous Multipartite Entanglement Purification for Size-Constrained Quantum Devices, Phys. Rev. Research 3, 033164 (2021).
  65. A. Chandra, W. Dai, and D. Towsley, Scheduling Quantum Teleportation with Noisy Memories, http://arxiv.org/abs/2205.06300.
  66. M. Guedes de Andrade, J. Días, J. Navas, S. Guha, I. Montaño, B. Smith, M. Raymer, and D. Towsley, Quantum Network Tomography with Multi-Party State Distribution, arXiv E-Prints arXiv:2206.02920 (2022).
  67. N. K. Panigrahy, P. Dhara, D. Towsley, S. Guha, and L. Tassiulas, Optimal Entanglement Distribution Using Satellite Based Quantum Networks, http://arxiv.org/abs/2205.12354. 215

Year 3

1 D. Chystas, N. Raveendran, A. Pradhan, B. Vasic Quaternary-binary Message-Passing Decoder for Quantum LDPC Codes, in IEEE Global Communications Conference (Globecomm 2023)

2 A. Pradhan, N.Raveendran, N. Rengaswamy, X. Xiao, B. Vasic Learning to Decode Quantum Trapping Set in QLDPC Codes, in IEEE International Symposium on Topics in Coding (ISTC 2023)

3 N. Raveendran, E. Boutillon, B. Vasic Low-Latency Flipping Decoders for Improving Error-Floors Performance of Quantum LDPC Codes, in IEEE International Symposium on Topics in Coding (ISTC 2023)

4 B. Zhou, B.A. Bash, S. Guha, C.N. Gagatsos, Bayesian minimum mean square error for transmissivity sensing. arXiv [quant-ph] 2304.05539. 2023. Available: http://arxiv.org/abs/2304.05539

5 D.W. Laorenza, D.E. Freedman, Could the Quantum Internet Be Comprised of Molecular Spins with Tunable Optical Interfaces? J Am Chem Soc. 2022;144: 21810–21825. doi:10.1021/jacs.2c07775

6 P. Alsing, P. Battle, J.C. Bienfang, T. Borders, T. Brower-Thomas, L. Carr, et al., Accelerating Progress Towards Practical Quantum Advantage: A National Science Foundation Project Scoping Workshop. arXiv [quant-ph] 2210.14757. 2022. Available: http://arxiv.org/abs/2210.14757

7 K.R. Mullin, D.W. Laorenza, D.E. Freedman, J.M. Rondinelli, Quantum sensing of magnetic fields with molecular color centers. arXiv [cond-mat.mtrl-sci] 2302.04248. 2023. Available: http://arxiv.org/abs/2302.04248

8 S. Krastanov, K. Jacobs, G. Gilbert, D.R. Englund, Controlled-phase gate by dynamic coupling of photons to a two-level emitter. npj Quantum. 2022. Available: https://www.nature.com/articles/s41534-022-00604-5

9 C. Michaels, J. Arjona Martinez, R. Parker, A. Stramma, K. Chen, I. Harris, et al., Spectroscopic Investigations of the Group IV spin qubits in Diamond. Bull Am Phys Soc. 2023. Available: https://meetings.aps.org/Meeting/MAR23/Session/W65.8

10 U. Saha, J.D. Siverns, J. Hannegan, M. Prabhu, Routing single photons from a trapped ion using a photonic integrated circuit. Physical Review. 2023. Available: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.19.034001

11 H. Wang, M.E. Trusheim, L. Kim, H. Raniwala, D.R. Englund, Field programmable spin arrays for scalable quantum repeaters. Nat Commun. 2023;14: 704. doi:10.1038/s41467-023-36098-8

12 *D.J. Starling, K. Shtyrkova, I. Christen, R. Murphy, L. Li, K.C. Chen, et al., A fully packaged multi-channel cryogenic quantum memory module. arXiv [quant-ph]. 2302.12919. 2023. Available: http://arxiv.org/abs/2302.12919

13 *L. Bugalho, E.Z. Cruzeiro, K.C. Chen, W. Dai, D. Englund, Y. Omar, Resource-efficient simulation of noisy quantum circuits and application to network-enabled QRAM optimization. arXiv [quant-ph] 2210.13494. 2022. Available: http://arxiv.org/abs/2210.13494

14 *M. Sutula, I. Christen, E. Bersin, M.P. Walsh, K.C. Chen, J. Mallek, et al., Large-scale optical characterization of solid-state quantum emitters. arXiv [quant-ph] 2210.13643. 2022. Available: http://arxiv.org/abs/2210.13643